9 research outputs found

    Vertical vibration effect on the Rayleigh-Benard-Marangoni instability in a two-layer system of fluids with deformable interface

    No full text
    The effect of vertical vibrations on the Rayleigh-Benard-Marangoni instability of a two-layer system of immiscible incompressible viscous fluids subjected to a constant vertical heat flux at the external boundaries is studied in the framework of the generalized Boussinesq approximation taking into account the interface deformations. The study is performed using the averaging approach under the assumption that the vibration period is small in comparison with the hydrodynamical time scales and the product of the vibration amplitude and the Boussinesq parameter is small in comparison with the layer thickness. It has been found that the long-wave instability is not affected by vibrations of small and moderate intensity. It turned out that vibrations have a stabilizing effect on the finite-wavelength perturbations in a wide range of parameters

    Coherent Structures at the Interface between Water Masses of Confluent Rivers

    No full text
    The paper presents the results of field measurements and numerical modeling of the influence of various factors on the formation of coherent structures in the confluence zone of the Sylva and Chusovaya rivers, which are dammed by the Kamskaya Hydroelectric Power Station (HPS). A characteristic feature of the measured parameters in the zone under study is that they experience both seasonal fluctuations and fluctuations of much higher frequency associated with intraday regulation of the HPS operation. These intraday fluctuations give rise to coherent structures with periodicity T~2–10 min, which manifest themselves in the fluctuations of the specific electrical conductivity of water. The flow velocity also experiences significant fluctuations with a sufficiently wide frequency spectrum, although the characteristic period of its fluctuations is less than the period of electrical conductivity fluctuations and is equal to ~1 min. In order to study the features of the formation of such structures, numerical simulation was carried out within the framework of the three-dimensional approach. Calculations were performed for a 300-meter-long stretch of the Chusovaya River, which is located downstream of the confluence of Chusovaya and Sylva rivers and is the site of the Chusovskoy water intake of Perm city. It was found that the intraday irregularity of HPS operation gives rise to the occurrence of vortex structures in this layer, leading to the temporal variation of concentration at a given point of space and the formation of the wave structure of the concentration field at different moments of time. Time period and spatial scale of such vortex structures depend on the ratio of velocities of water masses and difference in their mineralization and, accordingly, in densities. Moreover, the period of fluctuations is proportional to the ratio of flow velocities. These estimations are of fundamental importance for the implementation of stable selective intake of water with required consumer properties under conditions of intraday irregularity of hydroelectric power station operation

    Influence of Hydrodynamic Regimes on Mixing of Waters of Confluent Rivers

    No full text
    International audienceAt present, a significant weakening of the intensity of transverse mixing at the confluence of large rivers, which is observed in a number of cases, is widely discussed. Since the observed features of the confluence of large watercourses are not only of research interest but also of significant economic importance associated with the characteristics of water management at these water bodies, a large number of works are devoted to their study. Water resources management requires measures for the organization of water use which can be rational only under the understanding of processes occurring in water basins. To explain the phenomenon of suppression of the transverse mixing, which is interesting and important from the point of view of ecology, a wide range of hypotheses is proposed, up to the negation of turbulence in rivers. One of the possible mechanisms for explaining the suppression of transversal mixing can be the presence of transverse circulation manifesting itself as Prandtl’s secondary flows of the second kind. The characteristic velocity of these circulation flows is very small and difficult to measure directly by instruments; however, in our opinion, they can significantly complicate the transverse mixing at the confluence. The proposed hypothesis is tested in computational experiments in the framework of the three-dimensional formulation for dimensions of a real water object at the mouth of the Vishera River where it meets the Kama. Calculations demonstrate that, at sufficiently large flow rates, the two waters practically do not mix in the horizontal direction throughout the depth over long distances from the confluence. It has been found that a two-vortex flow is formed downstream the confluence, which just attenuates the mixing; the fluid motion in the vortices is such that, near the free surface, the fluid moves from the banks to the middle of the riverbed
    corecore