20 research outputs found

    Design, Synthesis, and Biomedical Applications of Glycotripods for Targeting Trimeric Lectins

    Get PDF
    In the last decades, various efforts have been made to synthesize optimal glycotripods for targeting trimeric glycoproteins like asialoglycoprotein receptor, hemagglutinin, and langerin. All these trimeric glycoproteins have sugar binding pockets which are highly selective for a particular carbohydrate ligand. Optimized glycotripods are high affinity binders and have been used for delivering drugs or even applied as drug candidates. The selection of the tripodal base scaffold together with the length and flexibility of the linker between the scaffold and sugar residue, as important design parameters are discussed in this review

    Synthesis and Comparison of Linear Polymannosides for Direct Binding with Escherichia Coli

    Get PDF
    Here, we demonstrate the synthesis of linear polyglycerols bearing multiple copies of mono and dimannosides [LPG40Man0.60 and LPG40(Manα1,2Man)0.60]. A method based on label-free microscale thermophoresis (MST) has been optimized to determine the direct binding affinity of multivalent mannosides for Escherichia coli (E. coli) strain ORN178 that produces the fimbriae protein FimH. We observed that the LPG40(Manα1,2Man)0.60 exhibited only a modest one-fold improvement in binding as compared to LPG40Man0.60. Nevertheless, both the multivalent mannosides displayed remarkably very low nM binding constant (Kd) in contrast to the high μM Kd of the single α-D-methylmannoside for intact E. coli ORN 178 particles. Furthermore, in an Adhesion-Inhibition Assay, both multivalent mannosides showed 50% inhibition of bacteria adhesion to the HT-29 colon cells at low μM concentrations

    Topology-Matching Design of an Influenza-Neutralizing Spiky Nanoparticle-Based Inhibitor with a Dual Mode of Action

    Get PDF
    In this study, we demonstrate the concept of "topology-matching design" for virus inhibitors. With the current knowledge of influenzaA virus (IAV), we designed a nanoparticle-based inhibitor (nano-inhibitor) that has a matched nanotopology to IAV virions and shows heteromultivalent inhibitory effects on hemagglutinin and neuraminidase. The synthesized nano-inhibitor can neutralize the viral particle extracellularly and block its attachment and entry to the host cells. The virus replication was significantly reduced by 6 orders of magnitude in the presence of the reverse designed nano-inhibitors. Even when used 24hours after the infection, more than 99.999% inhibition is still achieved, which indicates such a nano-inhibitor might be a potent antiviral for the treatment of influenza infection

    Dendritic Polyglycerol-Conjugated Gold Nanostars for Metabolism Inhibition and Targeted Photothermal Therapy in Breast Cancer Stem Cells

    Get PDF
    Breast cancer stem cells (CSCs) are believed to be responsible for tumor initiation, invasion, metastasis, and recurrence, which lead to treatment failure. Thus, developing effective CSC-targeted therapeutic strategies is crucial for enhancing therapeutic efficacy. In this work, GNSs-dPG-3BP, TPP, and HA nanocomposite particles are developed by simultaneously conjugating hexokinase 2 (HK2) inhibitor 3-bromopyruvate (3BP), mitochondrial targeting molecule triphenyl phosphonium (TPP), and CSCs targeting agent hyaluronic acid (HA) onto gold nanostars-dendritic polyglycerol (GNSs-dPG) nanoplatforms for efficient eradication of CSCs. The nanocomposite particles possess good biocompatibility and exhibit superior mitochondrial-bound HK2 binding ability via 3BP to inhibit metabolism, and further induce cellular apoptosis by releasing the cytochrome c. Therefore, it enhanced the therapeutic efficacy of CSCs-specific targeted photothermal therapy (PTT), and achieved a synergistic effect for the eradication of breast CSCs. After administration of the synergistic treatment, the self-renewal of breast CSCs and the stemness gene expression are suppressed, CSC-driven mammosphere formation is diminished, the in vivo tumor growth is effectively inhibited, and CSCs are eradicated. Altogether, GNSs-dPG-3BP, TPP, and HA nanocomposite particles have been developed, which will provide a novel strategy for precise and highly efficient targeted eradication of CSCs

    Adaptive flexible sialylated nanogels as highly potent influenza A virus inhibitors

    Get PDF
    Flexible multivalent 3D nanosystems that can deform and adapt onto the virus surface via specific ligand–receptor multivalent interactions can efficiently block virus adhesion onto the cell. We here report on the synthesis of a 250 nm sized flexible sialylated nanogel that adapts onto the influenza A virus (IAV) surface via multivalent binding of its sialic acid (SA) residues with hemagglutinin spike proteins on the virus surface. We could demonstrate that the high flexibility of sialylated nanogel improves IAV inhibition by 400 times as compared to a rigid sialylated nanogel in the hemagglutination inhibition assay. The flexible sialylated nanogel efficiently inhibits the influenza A/X31 (H3N2) infection with IC50 values in low picomolar concentrations and also blocks the virus entry into MDCK‐II cells

    Triazole-based C3-symmetric multivalent dendritic architecture as Cu(II) ion sensor

    No full text
    111-116C3-symmetric triazole-based multivalent dendritic architecture having uniform aromatic core and branches has been employed to study its metal binding ability towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) ions. The dendritic architecture is found to exhibit a high affinity for Cu(II) ions and formed a solid complex with a blue shift in the dd-band of Cu(II) chloride. X-band EPR spectra at low temperature has supported a distorted tetrahedral geometry for the complex. The complex has displayed quasi-reversible redox waves in cyclic voltammetry (CV). DFT calculations have shown that Cu(II) has a high affinity for the dendritic structure, leading to high complexation energies of the order of -25 eV, showing that the complexation reactions are highly exothermic. The binding constant (K) for the Cu(II) complex has been determined using a fluorescence titration method

    Chemo-Enzymatic Synthesis of Perfluoroalkyl-Functionalized Dendronized Polymers as Cyto-Compatible Nanocarriers for Drug Delivery Applications

    Get PDF
    Among amphiphilic polymers with diverse skeletons, fluorinated architectures have attracted significant attention due to their unique property of segregation and self-assembly into discrete supramolecular entities. Herein, we have synthesized amphiphilic copolymers by grafting hydrophobic alkyl/perfluoroalkyl chains and hydrophilic polyglycerol [G2.0] dendrons onto a co-polymer scaffold, which itself was prepared by enzymatic polymerization of poly[ethylene glycol bis(carboxymethyl) ether]diethylester and 2-azidopropan-1,3-diol. The resulting fluorinated polymers and their alkyl chain analogs were then compared in terms of their supramolecular aggregation behavior, solubilization capacity, transport potential, and release profile using curcumin and dexamethasone drugs. The study of the release profile of encapsulated curcumin incubated with/without a hydrolase enzyme Candida antarctica lipase (CAL-B) suggested that the drug is better stabilized in perfluoroalkyl chain grafted polymeric nanostructures in the absence of enzyme for up to 12 days as compared to its alkyl chain analogs. Although both the fluorinated as well as non-fluorinated systems showed up to 90% release of curcumin in 12 days when incubated with lipase, a comparatively faster release was observed in the fluorinated polymers. Cell viability of HeLa cells up to 95% in aqueous solution of fluorinated polymers (100 μg/mL) demonstrated their excellent cyto-compatibility

    Heteromultivalent topology-matched nanostructures as potent and broad-spectrum influenza A virus inhibitors

    Get PDF
    Here, we report the topology-matched design of heteromultivalent nanostructures as potent and broad-spectrum virus entry inhibitors based on the host cell membrane. Initially, we investigate the virus binding dynamics to validate the better binding performance of the heteromultivalent moieties as compared to homomultivalent ones. The heteromultivalent binding moieties are transferred to nanostructures with a bowl-like shape matching the viral spherical surface. Unlike the conventional homomultivalent inhibitors, the heteromultivalent ones exhibit a half maximal inhibitory concentration of 32.4 ± 13.7 μg/ml due to the synergistic multivalent effects and the topology-matched shape. At a dose without causing cellular toxicity, >99.99% reduction of virus propagation has been achieved. Since multiple binding sites have also been identified on the S protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), we envision that the use of heteromultivalent nanostructures may also be applied to develop a potent inhibitor to prevent coronavirus infection.Peer Reviewe
    corecore