48 research outputs found

    The Nylon Scintillator Containment Vessels for the Borexino Solar Neutrino Experiment

    Get PDF
    Borexino is a solar neutrino experiment designed to observe the 0.86 MeV Be-7 neutrinos emitted in the pp cycle of the sun. Neutrinos will be detected by their elastic scattering on electrons in 100 tons of liquid scintillator. The neutrino event rate in the scintillator is expected to be low (~0.35 events per day per ton), and the signals will be at energies below 1.5 MeV, where background from natural radioactivity is prominent. Scintillation light produced by the recoil electrons is observed by an array of 2240 photomultiplier tubes. Because of the intrinsic radioactive contaminants in these PMTs, the liquid scintillator is shielded from them by a thick barrier of buffer fluid. A spherical vessel made of thin nylon film contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by a second nylon vessel in order to prevent inward diffusion of radon atoms. The radioactive background requirements for Borexino are challenging to meet, especially for the scintillator and these nylon vessels. Besides meeting requirements for low radioactivity, the nylon vessels must also satisfy requirements for mechanical, optical, and chemical properties. The present paper describes the research and development, construction, and installation of the nylon vessels for the Borexino experiment

    Status and Plans for the National Spherical Torus Experimental Research Facility

    Full text link

    Light Yield in DarkSide-10: a Prototype Two-phase Liquid Argon TPC for Dark Matter Searches

    Full text link
    As part of the DarkSide program of direct dark matter searches using liquid argon TPCs, a prototype detector with an active volume containing 10 kg of liquid argon, DarkSide-10, was built and operated underground in the Gran Sasso National Laboratory in Italy. A critically important parameter for such devices is the scintillation light yield, as photon statistics limits the rejection of electron-recoil backgrounds by pulse shape discrimination. We have measured the light yield of DarkSide-10 using the readily-identifiable full-absorption peaks from gamma ray sources combined with single-photoelectron calibrations using low-occupancy laser pulses. For gamma lines of energies in the range 122-1275 keV, we get consistent light yields averaging 8.887+-0.003(stat)+-0.444(sys) p.e./keVee. With additional purification, the light yield measured at 511 keV increased to 9.142+-0.006(stat) p.e./keVee.Comment: 10 pages, 7 figures, Accepted for publication in Astroparticle Physic

    The Electronics and Data Acquisition System of the DarkSide Dark Matter Search

    Full text link
    It is generally inferred from astronomical measurements that Dark Matter (DM) comprises approximately 27\% of the energy-density of the universe. If DM is a subatomic particle, a possible candidate is a Weakly Interacting Massive Particle (WIMP), and the DarkSide-50 (DS) experiment is a direct search for evidence of WIMP-nuclear collisions. DS is located underground at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, and consists of three active, embedded components; an outer water veto (CTF), a liquid scintillator veto (LSV), and a liquid argon (LAr) time projection chamber (TPC). This paper describes the data acquisition and electronic systems of the DS detectors, designed to detect the residual ionization from such collisions

    Overview of recent physics results from the National Spherical Torus Experiment (NSTX)

    Full text link

    Cloning and expression of a single-chain antibody fragment specific for foot-and-mouth disease virus

    No full text
    AbstractThe gene for a single-chain antibody (VHK) to a conformational epitope on the type A12foot-and-mouth disease virus (FMDV) particle was assembled and expressed inEscherichia coli.The VHK, purified from periplasmic extracts immunoprecipitated virus as efficiently as its parental monoclonal antibody (MAb) and exhibited the same binding specificity when tested against a panel of natural and genetically engineered virus particles. The VHK neutralized type A12virus in the presence of goat anti-mouse IgG; however, in the absence of the second antibody, only weak neutralizing activity was detected. Preliminary analysis of the mechanism of viral neutralization indicated that both the MAb and the VHK neutralize by the same mechanism. Small amounts of the VHK allowed infection of cells via Fc receptor-mediated adsorption in the presence of the second antibody. These data represent the first report of a single-chain neutralizing antibody for a picornavirus and provide insights into the mechanisms of viral neutralization and virus uptake
    corecore