7,520 research outputs found
Physical education as Olympic education
Introduction
In a recent paper (Parry, 1998, p. 64), I argued that
the justification of PE activities lies in their capacity to facilitate the development of certain human excellences of a valued kind. Of course, the problem now lies in specifying those ‘human excellences of a valued kind’, and (for anyone) this task leads us into the area of philosophical anthropology.
I suggested that the way forward for Physical Education lies in the philosophical anthropology (and the ethical ideals) of Olympism, which provide a specification of a variety of human values and excellences which:
•have been attractive to human groups over an impressive span of time and space
•have contributed massively to our historically developed conceptions of ourselves
•have helped to develop a range of artistic and cultural conceptions that have defined Western culture.
•have produced a range of physical activities that have been found universally satisfying and challenging.
Although physical activities are widely considered to be pleasurable, their likelihood of gaining wide acceptance lies rather in their intrinsic value, which transcends the simply hedonic or relative good. Their ability to furnish us with pleasurable experiences depends upon our prior recognition in them of opportunities for the development and expression of valued human excellences. They are widely considered to be such opportunities for the expression of valued human excellences because, even when as local instantiations, their object is to challenge our common human propensities and abilities.
I claimed that Olympic ideals may be seen not merely as inert ‘ideals’, but living ideas which have the power to remake our notions of sport in education, seeing sport not as mere physical activity but as the cultural and developmental activity of an aspiring, achieving, well-balanced, educated and ethical individual.
This paper seeks to make good that claim by trying to develop a case for Physical Education as Olympic Education. I begin by setting out various accounts and conceptions of the Olympic Idea; then I suggest a unifying and organising account of the philosophical anthropology of Olympism; and this is followed by the practical application of that account in two examples of current ethical issues. Finally, I seek to present an account of Physical Education as Olympic Education
Optical and electrical activity of defects in rare earth implanted Si
A common technique for introducing rare earth atoms into Si and related materials for photonic applications is ion implantation. It is compatible with standard Si processing, and also allows high, non-equilibrium concentrations of rare earths to be introduced. However, the high energies often employed mean that there are collision cascades and potentially severe end-of-range damage. This paper reports on studies of this damage, and the competition it may present to the optical activity of the rare earths. Er-, Si, and Yb-implanted Si samples have been investigated, before and after anneals designed to restore the sample crystallinity. The electrical activity of
defects in as-implanted Er, Si, and Yb doped Si has been studied by Deep Level Transient Spectroscopy (DTLS) and the related, high resolution technique, Laplace DLTS (LDLTS), as a function of annealing. Er-implanted Si, regrown by solid phase epitaxy at 600degrees C and then subject to a rapid thermal anneal, has also been studied by time-resolved photoluminescence (PL). The LDLTS studies reveal that there are clear differences in the defect population as a function of depth from the surface, and this is attributed to different defects in the vacancy-rich and interstitial-rich regions. Defects in the interstitial-rich region have electrical characteristics typical of small extended defects, and these may provide the precursors for larger structural defects in annealed layers. The time-resolved PL of the annealed layers, in combination with electron microscopy, shows that the Er emission at 1.54microns contains a fast component attributed to non-radiative recombination at deep states due to small dislocations. It is concluded that there can be measurable competition to the radiative efficiency in rare-earth implanted Si that is due to the implantation and is not specific to Er.</p
Renegotiating identity and relationships: men and women's adjustments to retirement
Summary:
Retirement is frequently a period of change, when the roles and relationships associated with individuals' previous labour market positionings are transformed. It is also a time when personal relationships, including the marital relationship and relationships with friends and family, come under increased scrutiny and may be realigned. Many studies of adjustment to retirement focus primarily on individual motivation; by contrast, this paper seeks to examine the structure of resources within which such decisions are framed. The paper examines the contribution that gender roles and identities make to the overall configuration of resources available to particular individuals. It draws upon qualitative research conducted with older people in four contrasting parts of the UK, looking at the combination of labour market and non-labour market activities they are involved in prior to reaching state retirement age, as they withdraw from paid work. It explores how older people invoke a range of gendered identities to negotiate change and continuity during this time. The paper argues that gender roles and identities are central to this process and that the reflexive deployment of gender may rank alongside financial resources and social capital in its importance to the achievement of satisfying retirement transitions. Amongst those interviewed, traditional gendered roles predominated, and these sat less comfortably with retirement for men than for women
Correlation function algebra for inhomogeneous fluids
We consider variational (density functional) models of fluids confined in
parallel-plate geometries (with walls situated in the planes z=0 and z=L
respectively) and focus on the structure of the pair correlation function
G(r_1,r_2). We show that for local variational models there exist two
non-trivial identities relating both the transverse Fourier transform G(z_\mu,
z_\nu;q) and the zeroth moment G_0(z_\mu,z_\nu) at different positions z_1, z_2
and z_3. These relations form an algebra which severely restricts the possible
form of the function G_0(z_\mu,z_\nu). For the common situations in which the
equilibrium one-body (magnetization/number density) profile m_0(z) exhibits an
odd or even reflection symmetry in the z=L/2 plane the algebra simplifies
considerably and is used to relate the correlation function to the finite-size
excess free-energy \gamma(L). We rederive non-trivial scaling expressions for
the finite-size contribution to the free-energy at bulk criticality and for
systems where large scale interfacial fluctuations are present. Extensions to
non-planar geometries are also considered.Comment: 15 pages, RevTex, 4 eps figures. To appear in J.Phys.Condens.Matte
Droplet shapes on structured substrates and conformal invariance
We consider the finite-size scaling of equilibrium droplet shapes for fluid
adsorption (at bulk two-phase co-existence) on heterogeneous substrates and
also in wedge geometries in which only a finite domain of the
substrate is completely wet. For three-dimensional systems with short-ranged
forces we use renormalization group ideas to establish that both the shape of
the droplet height and the height-height correlations can be understood from
the conformal invariance of an appropriate operator. This allows us to predict
the explicit scaling form of the droplet height for a number of different
domain shapes. For systems with long-ranged forces, conformal invariance is not
obeyed but the droplet shape is still shown to exhibit strong scaling
behaviour. We argue that droplet formation in heterogeneous wedge geometries
also shows a number of different scaling regimes depending on the range of the
forces. The conformal invariance of the wedge droplet shape for short-ranged
forces is shown explicitly.Comment: 20 pages, 7 figures. (Submitted to J.Phys.:Cond.Mat.
Development of uniform and predictable battery materials for nickel cadmium aerospace cells Quarterly report, 8 Aug. - 7 Nov. 1968
Sintering of carbonyl nickel powders for nickel cadmium batteries fabricatio
The impact of blocking natural peat pipes on water-table depth and water quality
No abstract available
Issues on the molecular-beam epitaxial growth of p-SiGe inverted-modulation-doped structures
The influence of boron segregation and silicon cap-layer thickness on two-dimensional hole gases (2-DHGs) has been investigated in Si/Si0.8Ge0.2/Si inverted-modulation-doped heterostructures grown by solid-source molecular-beam epitaxy. Boron segregation, which is significant in structures with small spacer layers, can be suppressed by growth interruption after the boron doping. How growth interruption affected the electrical properties of the 2-DHG and the boron doping profile as measured by secondary ion mass spectroscopy are reported. We report also on the role played by the unpassivated silicon cap, and compare carrier transport at the normal and inverted interfaces
- …