231 research outputs found

    Platform-controlled social media APIs threaten Open Science

    Get PDF
    Social media data enable insights into human behavior. Researchers can access these data via platform-provided Application Programming Interfaces (APIs), but these come with restrictive usage-terms that mean studies cannot be reproduced or replicated. Platform-owned APIs hinder access, transparency, and scientific knowledge.<br/

    Hectospec, the MMT's 300 Optical Fiber-Fed Spectrograph

    Full text link
    The Hectospec is a 300 optical fiber fed spectrograph commissioned at the MMT in the spring of 2004. A pair of high-speed six-axis robots move the 300 fiber buttons between observing configurations within ~300 s and to an accuracy ~25 microns. The optical fibers run for 26 m between the MMT's focal surface and the bench spectrograph operating at R~1000-2000. Another high dispersion bench spectrograph offering R~5,000, Hectochelle, is also available. The system throughput, including all losses in the telescope optics, fibers, and spectrograph peaks at ~10% at the grating blaze in 1" FWHM seeing. Correcting for aperture losses at the 1.5" diameter fiber entrance aperture, the system throughput peaks at \sim17%. Hectospec has proven to be a workhorse instrument at the MMT. Hectospec and Hectochelle together were scheduled for 1/3 of the available nights since its commissioning. Hectospec has returned \~60,000 reduced spectra for 16 scientific programs during its first year of operation.Comment: 68 pages, 28 figures, to appear in December 2005 PAS

    Wetting films on chemically heterogeneous substrates

    Full text link
    Based on a microscopic density functional theory we investigate the morphology of thin liquidlike wetting films adsorbed on substrates endowed with well-defined chemical heterogeneities. As paradigmatic cases we focus on a single chemical step and on a single stripe. In view of applications in microfluidics the accuracy of guiding liquids by chemical microchannels is discussed. Finally we give a general prescription of how to investigate theoretically the wetting properties of substrates with arbitrary chemical structures.Comment: 56 pages, RevTeX, 20 Figure

    Risk of COVID-19-related death among patients with chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: an observational cohort study using the OpenSAFELY platform

    Get PDF
    BACKGROUND: Early descriptions of patients admitted to hospital during the COVID-19 pandemic showed a lower prevalence of asthma and chronic obstructive pulmonary disease (COPD) than would be expected for an acute respiratory disease like COVID-19, leading to speculation that inhaled corticosteroids (ICSs) might protect against infection with severe acute respiratory syndrome coronavirus 2 or the development of serious sequelae. We assessed the association between ICS and COVID-19-related death among people with COPD or asthma using linked electronic health records (EHRs) in England, UK. METHODS: In this observational study, we analysed patient-level data for people with COPD or asthma from primary care EHRs linked with death data from the Office of National Statistics using the OpenSAFELY platform. The index date (start of follow-up) for both cohorts was March 1, 2020; follow-up lasted until May 6, 2020. For the COPD cohort, individuals were eligible if they were aged 35 years or older, had COPD, were a current or former smoker, and were prescribed an ICS or long-acting β agonist plus long-acting muscarinic antagonist (LABA-LAMA) as combination therapy within the 4 months before the index date. For the asthma cohort, individuals were eligible if they were aged 18 years or older, had been diagnosed with asthma within 3 years of the index date, and were prescribed an ICS or short-acting β agonist (SABA) only within the 4 months before the index date. We compared the outcome of COVID-19-related death between people prescribed an ICS and those prescribed alternative respiratory medications: ICSs versus LABA-LAMA for the COPD cohort, and low-dose or medium-dose and high-dose ICSs versus SABAs only in the asthma cohort. We used Cox regression models to estimate hazard ratios (HRs) and 95% CIs for the association between exposure categories and the outcome in each population, adjusted for age, sex, and all other prespecified covariates. We calculated e-values to quantify the effect of unmeasured confounding on our results. FINDINGS: We identified 148 557 people with COPD and 818 490 people with asthma who were given relevant respiratory medications in the 4 months before the index date. People with COPD who were prescribed ICSs were at increased risk of COVID-19-related death compared with those prescribed LABA-LAMA combinations (adjusted HR 1·39 [95% CI 1·10-1·76]). Compared with those prescribed SABAs only, people with asthma who were prescribed high-dose ICS were at an increased risk of death (1·55 [1·10-2·18]), whereas those given a low or medium dose were not (1·14 [0·85-1·54]). Sensitivity analyses showed that the apparent harmful association we observed could be explained by relatively small health differences between people prescribed ICS and those not prescribed ICS that were not recorded in the database (e value lower 95% CI 1·43). INTERPRETATION: Our results do not support a major role for regular ICS use in protecting against COVID-19-related death among people with asthma or COPD. Observed increased risks of COVID-19-related death can be plausibly explained by unmeasured confounding due to disease severity. FUNDING: UK Medical Research Council

    Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: an observational cohort study using the OpenSAFELY platform.

    Get PDF
    BACKGROUND: COVID-19 has disproportionately affected minority ethnic populations in the UK. Our aim was to quantify ethnic differences in SARS-CoV-2 infection and COVID-19 outcomes during the first and second waves of the COVID-19 pandemic in England. METHODS: We conducted an observational cohort study of adults (aged ≥18 years) registered with primary care practices in England for whom electronic health records were available through the OpenSAFELY platform, and who had at least 1 year of continuous registration at the start of each study period (Feb 1 to Aug 3, 2020 [wave 1], and Sept 1 to Dec 31, 2020 [wave 2]). Individual-level primary care data were linked to data from other sources on the outcomes of interest: SARS-CoV-2 testing and positive test results and COVID-19-related hospital admissions, intensive care unit (ICU) admissions, and death. The exposure was self-reported ethnicity as captured on the primary care record, grouped into five high-level census categories (White, South Asian, Black, other, and mixed) and 16 subcategories across these five categories, as well as an unknown ethnicity category. We used multivariable Cox regression to examine ethnic differences in the outcomes of interest. Models were adjusted for age, sex, deprivation, clinical factors and comorbidities, and household size, with stratification by geographical region. FINDINGS: Of 17 288 532 adults included in the study (excluding care home residents), 10 877 978 (62·9%) were White, 1 025 319 (5·9%) were South Asian, 340 912 (2·0%) were Black, 170 484 (1·0%) were of mixed ethnicity, 320 788 (1·9%) were of other ethnicity, and 4 553 051 (26·3%) were of unknown ethnicity. In wave 1, the likelihood of being tested for SARS-CoV-2 infection was slightly higher in the South Asian group (adjusted hazard ratio 1·08 [95% CI 1·07-1·09]), Black group (1·08 [1·06-1·09]), and mixed ethnicity group (1·04 [1·02-1·05]) and was decreased in the other ethnicity group (0·77 [0·76-0·78]) relative to the White group. The risk of testing positive for SARS-CoV-2 infection was higher in the South Asian group (1·99 [1·94-2·04]), Black group (1·69 [1·62-1·77]), mixed ethnicity group (1·49 [1·39-1·59]), and other ethnicity group (1·20 [1·14-1·28]). Compared with the White group, the four remaining high-level ethnic groups had an increased risk of COVID-19-related hospitalisation (South Asian group 1·48 [1·41-1·55], Black group 1·78 [1·67-1·90], mixed ethnicity group 1·63 [1·45-1·83], other ethnicity group 1·54 [1·41-1·69]), COVID-19-related ICU admission (2·18 [1·92-2·48], 3·12 [2·65-3·67], 2·96 [2·26-3·87], 3·18 [2·58-3·93]), and death (1·26 [1·15-1·37], 1·51 [1·31-1·71], 1·41 [1·11-1·81], 1·22 [1·00-1·48]). In wave 2, the risks of hospitalisation, ICU admission, and death relative to the White group were increased in the South Asian group but attenuated for the Black group compared with these risks in wave 1. Disaggregation into 16 ethnicity groups showed important heterogeneity within the five broader categories. INTERPRETATION: Some minority ethnic populations in England have excess risks of testing positive for SARS-CoV-2 and of adverse COVID-19 outcomes compared with the White population, even after accounting for differences in sociodemographic, clinical, and household characteristics. Causes are likely to be multifactorial, and delineating the exact mechanisms is crucial. Tackling ethnic inequalities will require action across many fronts, including reducing structural inequalities, addressing barriers to equitable care, and improving uptake of testing and vaccination. FUNDING: Medical Research Council

    Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Davis, G. E., Baumgartner, M. F., Corkeron, P. J., Bell, J., Berchok, C., Bonnell, J. M., Thornton, J. B., Brault, S., Buchanan, G. A., Cholewiak, D. M., Clark, C. W., Delarue, J., Hatch, L. T., Klinck, H., Kraus, S. D., Martin, B., Mellinger, D. K., Moors-Murphy, H., Nieukirk, S., Nowacek, D. P., Parks, S. E., Parry, D., Pegg, N., Read, A. J., Rice, A. N., Risch, D., Scott, A., Soldevilla, M. S., Stafford, K. M., Stanistreet, J. E., Summers, E., Todd, S., & Van Parijs, S. M. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Global Change Biology, (2020): 1-30, doi:10.1111/gcb.15191.Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata ) and North Atlantic right whales (NARW; Eubalaena glacialis ). This study assesses the acoustic presence of humpback (Megaptera novaeangliae ), sei (B. borealis ), fin (B. physalus ), and blue whales (B. musculus ) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.We thank Chris Pelkie, David Wiley, Michael Thompson, Chris Tessaglia‐Hymes, Eric Matzen, Chris Tremblay, Lance Garrison, Anurag Kumar, John Hildebrand, Lynne Hodge, Russell Charif, Kathleen Dudzinski, and Ann Warde for help with project planning, field work support, and data management. For all the support and advice, thanks to the NEFSC Protected Species Branch, especially the passive acoustics group, Josh Hatch, and Leah Crowe. We thank the field and crew teams on all the ships that helped in the numerous deployments and recoveries. This research was funded and supported by many organizations, specified by projects as follows: data recordings from region 1 were provided by K. Stafford (funding: National Science Foundation #NSF‐ARC 0532611). Region 2 data: D. K. Mellinger and S. Nieukirk, National Oceanic and Atmospheric Administration (NOAA) PMEL contribution #5055 (funding: NOAA and the Office of Naval Research #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244‐08‐1‐0029, N00244‐09‐1‐0079, and N00244‐10‐1‐0047). Region 3A data: D. Risch (funding: NOAA and Navy N45 programs). Region 3 data: H. Moors‐Murphy and Fisheries and Oceans Canada (2005–2014 data), and the Whitehead Lab of Dalhousie University (eastern Scotian Shelf data; logistical support by A. Cogswell, J. Bartholette, A. Hartling, and vessel CCGS Hudson crew). Emerald Basin and Roseway Basin Guardbuoy data, deployment, and funding: Akoostix Inc. Region 3 Emerald Bank and Roseway Basin 2004 data: D. K. Mellinger and S. Nieukirk, NOAA PMEL contribution #5055 (funding: NOAA). Region 4 data: S. Parks (funding: NOAA and Cornell University) and E. Summers, S. Todd, J. Bort Thornton, A. N. Rice, and C. W. Clark (funding: Maine Department of Marine Resources, NOAA #NA09NMF4520418, and #NA10NMF4520291). Region 5 data: S. M. Van Parijs, D. Cholewiak, L. Hatch, C. W. Clark, D. Risch, and D. Wiley (funding: National Oceanic Partnership Program (NOPP), NOAA, and Navy N45). Region 6 data: S. M. Van Parijs and D. Cholewiak (funding: Navy N45 and Bureau of Ocean and Energy Management (BOEM) Atlantic Marine Assessment Program for Protected Species [AMAPPS] program). Region 7 data: A. N. Rice, H. Klinck, A. Warde, B. Martin, J. Delarue, and S. Kraus (funding: New York State Department of Environmental Conservation, Massachusetts Clean Energy Center, and BOEM). Region 8 data: G. Buchanan, and K. Dudzinski (funding: New Jersey Department of Environmental Protection and the New Jersey Clean Energy Fund) and A. N. Rice, C. W. Clark, and H. Klinck (funding: Center for Conservation Bioacoustics at Cornell University and BOEM). Region 9 data: J. E. Stanistreet, J. Bell, D. P. Nowacek, A. J. Read, and S. M. Van Parijs (funding: NOAA and US Fleet Forces Command). Region 10 data: L. Garrison, M. Soldevilla, C. W. Clark, R. A. Chariff, A. N. Rice, H. Klinck, J. Bell, D. P. Nowacek, A. J. Read, J. Hildebrand, A. Kumar, L. Hodge, and J. E. Stanistreet (funding: US Fleet Forces Command, BOEM, NOAA, and NOPP). Region 11 data: C. Berchok as part of a collaborative project led by the Fundacion Dominicana de Estudios Marinos, Inc. (Dr. Idelisa Bonnelly de Calventi; funding: The Nature Conservancy [Elianny Dominguez]) and D. Risch (funding: World Wildlife Fund, NOAA, and Dutch Ministry of Economic Affairs)
    corecore