27 research outputs found

    Lieutenant Governor Murray's Public Schedule

    Get PDF
    Terahertz (THz) thin-film total internal reflection (TF-TIR) spectroscopy is shown to have an enhanced sensitivity to the vibrational properties of thin films in comparison with standard THz transmission spectroscopy. This increased sensitivity was used to track photoinduced modifications to the structure of thin films of methylammonium (MA) lead halide, MAPbI3–xBrx (x = 0, 0.5, 1, and 3). Initially, illumination strengthened the phonon modes around 2 THz, associated with Pb–I stretch modes coupled to the MA ions, whereas the 1 THz twist modes of the inorganic octahedra did not alter in strength. Under longer term illumination, the 1 THz phonon modes of encapsulated films slowly reduced in strength, whereas in films exposed to moisture and oxygen, these phonons weaken more rapidly and blue-shift in frequency. The rapid monitoring of environmentally induced changes to the vibrational modes afforded by TF-TIR spectroscopy offers applications in the characterization and quality control of the perovskite thin-film solar cells and other thin-film semiconductors

    Pharmaceuticals and personal care products in the environment: What are the big questions?

    Get PDF
    Background: Over the past 10-15 years, a substantial amount of work has been done by the scientific, regulatory, and business communities to elucidate the effects and risks of pharmaceuticals and personal care products (PPCPs) in the environment. Objective: This review was undertaken to identify key outstanding issues regarding the effects of PPCPs on human and ecological health in order to ensure that future resources will be focused on the most important areas. Data sources: To better understand and manage the risks of PPCPs in the environment, we used the "key question" approach to identify the principle issues that need to be addressed. Initially, questions were solicited from academic, government, and business communities around the world. A list of 101 questions was then discussed at an international expert workshop, and a top-20 list was developed. Following the workshop, workshop attendees ranked the 20 questions by importance. Data synthesis: The top 20 priority questions fell into seven categories: a) prioritization of substances for assessment, b) pathways of exposure, c) bioavailability and uptake, d) effects characterization, e) risk and relative risk, f) antibiotic resistance, and g) risk management. Conclusions: A large body of information is now available on PPCPs in the environment. This exercise prioritized the most critical questions to aid in development of future research programs on the topic.Centro de Investigaciones del Medioambient

    Photometry of the Didymos System across the DART Impact Apparition

    Get PDF
    On 2022 September 26, the Double Asteroid Redirection Test (DART) spacecraft impacted Dimorphos, the satellite of binary near-Earth asteroid (65803) Didymos. This demonstrated the efficacy of a kinetic impactor for planetary defense by changing the orbital period of Dimorphos by 33 minutes. Measuring the period change relied heavily on a coordinated campaign of lightcurve photometry designed to detect mutual events (occultations and eclipses) as a direct probe of the satellite’s orbital period. A total of 28 telescopes contributed 224 individual lightcurves during the impact apparition from 2022 July to 2023 February. We focus here on decomposable lightcurves, i.e., those from which mutual events could be extracted. We describe our process of lightcurve decomposition and use that to release the full data set for future analysis. We leverage these data to place constraints on the postimpact evolution of ejecta. The measured depths of mutual events relative to models showed that the ejecta became optically thin within the first ∼1 day after impact and then faded with a decay time of about 25 days. The bulk magnitude of the system showed that ejecta no longer contributed measurable brightness enhancement after about 20 days postimpact. This bulk photometric behavior was not well represented by an HG photometric model. An HG 1 G 2 model did fit the data well across a wide range of phase angles. Lastly, we note the presence of an ejecta tail through at least 2023 March. Its persistence implied ongoing escape of ejecta from the system many months after DART impact

    Probing biological systems with terahertz spectroscopy

    No full text
    Terahertz spectroscopy is able to probe several aspects of biological systems. Most well known is its sensitivity to water due to the strong water absorptions at terahertz frequencies. However an increasing number of studies have shown that it is not just water content that terahertz is sensitive to and that other factors such as tissue structure, molecular arrangement or even temperature can also affect the signal. Examples ranging from breast cancer spectroscopy to antibody protein spectroscopy will be presented and discussed

    Using THz-TDS of ethyl lactate/water mixtures to gain insight into solvent dynamics

    No full text
    In this work, terahertz spectroscopy was used to study the hydrogen bonding behaviour in mixtures of ethyl lactate and water. The results obtained show a marked deviation from a two-phase system, which agrees with data from other techniques

    Exploiting total internal reflection geometry for efficient optical modulation of terahertz light

    No full text
    Efficient methods to modulate terahertz (THz) light are essential for realizing rapid THz imaging and communication applications. Here we report a novel THz modulator which utilizes the evanescent wave in a total internal reflection setup coupled with a conductive interface to enhance the attenuation efficiency of THz light. This approach makes it possible to achieve close to 100% modulation with a small interface conductivity of 12 mS. The frequency dependence of this technique is linked to the optical properties of the materials: a material with close to frequency independent conductivity that is also controllable will result in an achromatic modulation response, and the device performance can be optimized further by tuning the internal reflection angle. In this work, we focus on applying the technique in the terahertz frequency range. Using an LED array with a pump intensity of 475 mW/cm2 to produce carriers in a silicon wafer, we have achieved a modulation depth of up to 99.9% in a broad frequency range of 0.1 THz–0.8 THz. The required pumping power for the generation of the required free carriers is low because the sheet conductivity needed is far less than required for traditional transmission techniques. Consequently, the device can be modulated by an LED making it a very practical, low cost, and scalable solution for THz modulation

    In vivo estimation of water diffusivity in occluded human skin using terahertz reflection spectroscopy

    Get PDF
    Water diffusion and the concentration profile within the skin significantly affect the surrounding chemical absorption and molecular synthesis. Occluding the skin causes water to accumulate in the top layer of the skin (the stratum corneum) and also affects the water diffusivity. Scar treatments such as silicone gel and silicone sheets make use of occlusion to increase skin hydration. However with existing techniques, it is not possible to quantitatively measure the diffusivity of the water during occlusion: current methods determine water diffusivity by measuring the water evaporated through the skin and thus require the skin to breathe. In this work we use the high sensitivity of terahertz light to water to study how the water content in the stratum corneum changes upon occlusion. From our measurements, we can solve the diffusion equations in the stratum corneum to deduce the water concentration profile in occluded skin and subsequently to determine the diffusivity. To our knowledge this is the first work showing how the diffusivity of human skin can be measured during occlusion and we envisage this paper as being used as a guide for non‐invasively determining the diffusivity of occluded human skin in vivo

    Robust Thin-Film Wire-Grid THz Polarizer Fabricated Via a Low-Cost Approach

    No full text
    A robust thin-film wire-grid terahertz (THz) polarizer was fabricated via a low-cost, mass-producible manufacturing approach. This polarizer is built on a very thin silica layer structurally supported by a silicon substrate. In addition, the metal grating is protected by a polymer thin film, which eliminates the multireflection effect and enhances the robustness of the polarizer for easy packaging. The polarizer can be easily mounted onto a Newport rotation holder for immediate use. A THz time-domain spectrometer is used to characterize its performance, and an excellent agreement is found between the FDTD-simulated results and the experimental results. The polarizer offered 20-40 dB and 0.8 dB of extinction ratio and transmission loss over a frequency range of 0.2-2.0 THz, respectively
    corecore