11 research outputs found

    A database and tool, IM Browser, for exploring and integrating emerging gene and protein interaction data for Drosophila

    Get PDF
    BACKGROUND: Biological processes are mediated by networks of interacting genes and proteins. Efforts to map and understand these networks are resulting in the proliferation of interaction data derived from both experimental and computational techniques for a number of organisms. The volume of this data combined with the variety of specific forms it can take has created a need for comprehensive databases that include all of the available data sets, and for exploration tools to facilitate data integration and analysis. One powerful paradigm for the navigation and analysis of interaction data is an interaction graph or map that represents proteins or genes as nodes linked by interactions. Several programs have been developed for graphical representation and analysis of interaction data, yet there remains a need for alternative programs that can provide casual users with rapid easy access to many existing and emerging data sets. DESCRIPTION: Here we describe a comprehensive database of Drosophila gene and protein interactions collected from a variety of sources, including low and high throughput screens, genetic interactions, and computational predictions. We also present a program for exploring multiple interaction data sets and for combining data from different sources. The program, referred to as the Interaction Map (IM) Browser, is a web-based application for searching and visualizing interaction data stored in a relational database system. Use of the application requires no downloads and minimal user configuration or training, thereby enabling rapid initial access to interaction data. IM Browser was designed to readily accommodate and integrate new types of interaction data as it becomes available. Moreover, all information associated with interaction measurements or predictions and the genes or proteins involved are accessible to the user. This allows combined searches and analyses based on either common or technique-specific attributes. The data can be visualized as an editable graph and all or part of the data can be downloaded for further analysis with other tools for specific applications. The database is available at CONCLUSION: The Drosophila Interactions Database described here places a variety of disparate data into one easily accessible location. The database has a simple structure that maintains all relevant information about how each interaction was determined. The IM Browser provides easy, complete access to this database and could readily be used to publish other sets of interaction data. By providing access to all of the available information from a variety of data types, the program will also facilitate advanced computational analyses

    A proteome-wide screen of Campylobacter jejuni using protein microarrays identifies novel and conformational antigens.

    No full text
    Campylobacter jejuni (C. jejuni) is a foodborne intestinal pathogen and major cause of gastroenteritis worldwide. C. jejuni proteins that are immunogenic have been sought for their potential use in the development of biomarkers, diagnostic assays, or subunit vaccines for humans or livestock. To identify new immunogenic C. jejuni proteins, we used a native protein microarray approach. A protein chip, with over 1400 individually purified GST-tagged C. jejuni proteins, representing over 86% of the proteome, was constructed to screen for antibody titers present in test sera raised against whole C. jejuni cells. Dual detection of GST signals was incorporated as a way of normalizing the variation of protein concentrations contributing to the antibody staining intensities. We detected strong signals to 102 C. jejuni antigens. In addition to antigens recognized by antiserum raised against C. jejuni, parallel experiments were conducted to identify antigens cross-reactive to antiserum raised against various serotypes of E. coli or Salmonella or to healthy human sera. This led to the identification of 34 antigens specifically recognized by the C. jejuni antiserum, only four of which were previously known. The chip approach also allowed identification of conformational antigens. We demonstrate in the case of Cj1621 that antigen signals are lost to denaturing conditions commonly used in other approaches to identify immunogens. Antigens identified in this study include those possessing sequence features indicative of cell surface localization, as well as those that do not. Together, our results indicate that the unbiased chip-based screen can help reveal the full repertoire of host antibodies against microbial proteomes

    A database and tool, IM Browser, for exploring and integrating emerging gene and protein interaction data for -2

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "A database and tool, IM Browser, for exploring and integrating emerging gene and protein interaction data for "</p><p>BMC Bioinformatics 2006;7():195-195.</p><p>Published online 7 Apr 2006</p><p>PMCID:PMC1458360.</p><p>Copyright © 2006 Pacifico et al; licensee BioMed Central Ltd.</p>ble and the 'Yeast Interologs' table. The interaction between CG9779 and CG8055 was detected in both tables, and thus might be considered a higher confidence interaction. The graph also shows that CG8055 interacts with itself (blue box)

    The protein network of bacterial motility

    Get PDF
    Motility is achieved in most bacterial species by the flagellar apparatus. It consists of dozens of different proteins with thousands of individual subunits. The published literature about bacterial chemotaxis and flagella documented 51 protein?protein interactions (PPIs) so far. We have screened whole genome two‐hybrid arrays of Treponema pallidum and Campylobacter jejuni for PPIs involving known flagellar proteins and recovered 176 and 140 high‐confidence interactions involving 110 and 133 proteins, respectively. To explore the biological relevance of these interactions, we tested an Escherichia coli gene deletion array for motility defects (using swarming assays) and found 159 gene deletion strains to have reduced or no motility. Comparing our interaction data with motility phenotypes from E. coli, Bacillus subtilis, and Helicobacter pylori, we found 23 hitherto uncharacterized proteins involved in motility. Integration of phylogenetic information with our interaction and phenotyping data reveals a conserved core of motility proteins, which appear to have recruited many additional species‐specific components over time. Our interaction data also predict 18 110 interactions for 64 flagellated bacteria.Mol Syst Biol. 3: 12
    corecore