15 research outputs found

    An NAD+ Phosphorylase Toxin Triggers Mycobacterium tuberculosis Cell Death.

    Get PDF
    Toxin-antitoxin (TA) systems regulate fundamental cellular processes in bacteria and represent potential therapeutic targets. We report a new RES-Xre TA system in multiple human pathogens, including Mycobacterium tuberculosis. The toxin, MbcT, is bactericidal unless neutralized by its antitoxin MbcA. To investigate the mechanism, we solved the 1.8 Å-resolution crystal structure of the MbcTA complex. We found that MbcT resembles secreted NAD+-dependent bacterial exotoxins, such as diphtheria toxin. Indeed, MbcT catalyzes NAD+ degradation in vitro and in vivo. Unexpectedly, the reaction is stimulated by inorganic phosphate, and our data reveal that MbcT is a NAD+ phosphorylase. In the absence of MbcA, MbcT triggers rapid M. tuberculosis cell death, which reduces mycobacterial survival in macrophages and prolongs the survival of infected mice. Our study expands the molecular activities employed by bacterial TA modules and uncovers a new class of enzymes that could be exploited to treat tuberculosis and other infectious diseases

    Novel Lectin-Like Bacteriocins of Biocontrol Strain Pseudomonas fluorescens Pf-5

    No full text
    Bacteriocin LlpA, produced by Pseudomonas sp. strain BW11M1, is a peculiar antibacterial protein due to its homology to mannose-binding lectins mostly found in monocots (A. H. A. Parret, G. Schoofs, P. Proost, and R. De Mot, J. Bacteriol. 185:897-908, 2003). Biocontrol strain Pseudomonas fluorescens Pf-5 contains two llpA-like genes, named llpA1(Pf-5) and llpA2(Pf-5). Recombinant Escherichia coli cells expressing llpA1(Pf-5) or llpA2(Pf-5) acquired bacteriocin activity and secreted a 31-kDa protein cross-reacting with LlpA(BW11M1) antibodies. Antibacterial activity of the recombinant proteins was evidenced by gel overlay assays. Analysis of the antimicrobial spectrum indicated that LlpA1(Pf-5) and LlpA2(Pf-5) are able to inhibit P. fluorescens strains, as well as the related mushroom pathogen Pseudomonas tolaasii. LlpA-type bacteriocins are characterized by a domain structure consisting of tandem monocot mannose-binding lectin (MMBL) domains. Molecular phylogeny of these MMBL domains suggests that the individual MMBL domains within an LlpA protein have evolved separately toward a specific, as yet unknown, function or, alternatively, were acquired from different ancestral sources. Our observations are consistent with earlier observations, which hinted that MMBL-like bacteriocins represent a new family of antibacterial proteins, probably with a novel mode of action

    Plant Lectin-Like Bacteriocin from a Rhizosphere-Colonizing Pseudomonas Isolate

    No full text
    Rhizosphere isolate Pseudomonas sp. strain BW11M1, which belongs to the Pseudomonas putida cluster, secretes a heat- and protease-sensitive bacteriocin which kills P. putida GR12-2R3. The production of this bacteriocin is enhanced by DNA-damaging treatment of producer cells. We isolated a TnMod mutant of strain BW11M1 that had lost the capacity to inhibit the growth of strain GR12-2R3. A wild-type genomic fragment encompassing the transposon insertion site was shown to confer the bacteriocin phenotype when it was introduced into Escherichia coli cells. The bacteriocin structural gene was identified by defining the minimal region required for expression in E. coli. This gene was designated llpA (lectin-like putidacin) on the basis of significant homology of its 276-amino-acid product with mannose-binding lectins from monocotyledonous plants. LlpA is composed of two monocot mannose-binding lectin (MMBL) domains. Several uncharacterized bacterial genes encoding diverse proteins containing one or two MMBL domains were identified. A phylogenetic analysis of the MMBL domains present in eukaryotic and prokaryotic proteins assigned the putidacin domains to a new bacterial clade within the MMBL-containing protein family. Heterologous expression of the llpA gene also conveyed bacteriocin production to several Pseudomonas fluorescens strains. In addition, we demonstrated that strain BW11M1 and heterologous hosts secrete LlpA into the growth medium without requiring a cleavable signal sequence. Most likely, the mode of action of this lectin-like bacteriocin is different from the modes of action of previously described Pseudomonas bacteriocins

    Klonering van het DM-AMP1-gevoeligheidsgen van een DM-AMP1-resistente Saccharomyces cerevisiae stam

    No full text
    SIGLEAvailable from KULeuven, Campusbib. Exacte Wetenschappen, Celestijnenlaan 300A, 3001 Heverlee, Belgium / UCL - Université Catholique de LouvainBEBelgiu

    The C2 domain of SynGAP is essential for stimulation of the Rap GTPase reaction

    No full text
    The brain-specific synaptic guanosine triphosphatase (GTPase)-activating protein (SynGAP) is important in synaptic plasticity. It shows dual specificity for the small guanine nucleotide-binding proteins Rap and Ras. Here, we show that RapGAP activity of SynGAP requires its C2 domain. In contrast to the isolated GAP domain, which does not show any detectable RapGAP activity, a fragment comprising the C2 and GAP domains (C2–GAP) stimulates the intrinsic GTPase reaction of Rap by approximately 1 × 104. The C2–GAP crystal structure, complemented by modelling and biochemical analyses, favours a concerted movement of the C2 domain towards the switch II region of Rap to assist in GTPase stimulation. Our data support a catalytic mechanism similar to that of canonical RasGAPs and distinct from the canonical RapGAPs. SynGAP presents the first example, to our knowledge, of a GAP that uses a second domain for catalytic activity, thus pointing to a new function of C2 domains

    Quality control of purified proteins to improve data quality and reproducibility: results from a large-scale survey

    No full text
    As the scientific community strives to make published results more transparent and reliable, it has become obvious that poor data reproducibility can often be attributed to insufficient quality control of experimental reagents. In this context, proteins and peptides reagents require much stricter quality controls than those routinely performed on them in a significant proportion of research laboratories. Members of the ARBRE-MOBIEU and the P4EU networks have combined their expertise to generate guidelines for the evaluation of purified proteins used in life sciences and medical trials. These networks, representing more than 150 laboratories specialized in protein production and/or protein molecular biophysics, have implemented such guidelines in their respective laboratories. Over a one-year period, the network members evaluated the contribution these guidelines made toward obtaining more productive, robust and reproducible research by correlating the applied quality controls to given samples with the reliability and reproducibility of the scientific data obtained using these samples in follow-up experiments. The results indicate that QC guideline implementation facilitates the optimization of the protein purification process and improves the reliability of downstream experiments. It seems, therefore, that investing in protein QC might be advantageous to all the stakeholders in life sciences (researchers, editors, and funding agencies alike), because this practice improves data veracity and minimizes loss of valuable time and resources. In the light of these conclusions, the network members suggest that the implementation of these simple QC guidelines should become minimal reporting practice in the publication of data derived from the use of protein and peptide reagents.Peer reviewe
    corecore