27 research outputs found

    Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.

    Get PDF
    Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS

    Quantification of unidirectional nonlinear associations between multidimensional signals.

    No full text
    In this paper, we present a rigorous, general definition of the nonlinear association index, known as h2. Proving equivalence between different definitions we show that the index measures the best dynamic range of any nonlinear map between signals. We present also a construction for removing the influence of one signal from another, providing, thus, the basis of an independent component analysis. Our definition applies to arbitrary multidimensional vector-valued signals and depends on an aperture function. In this way, the bin-related classic definition of h2 can be generalized. We show that upon choosing suitable aperture functions the bin-related intuitive definition can be deduced. Special attention is dedicated to the direction of the association index that in general is taken in only one sense. We show that for linearly coupled signals high associations are always bidirectional. As a consequence, high asymmetric nonlinear associations are indicators of nonlinear relations, possibly critical, between the dynamic systems underlying the measured signals. We give a simple simulated example to illustrate this property. As a potential clinical application, we show that unidirectional associations between electroencephalogram (EEG) and electromyogram (EMG) recorded from patient with pharmacologically intractable epilepsy can be used to study the cortical involvement in the generation of motor seizures

    Dynamics of epileptic phenomena determined from statistics of ictal transitions

    No full text
    Contains fulltext : 54678.pdf (publisher's version ) (Closed access)In this paper, we investigate the dynamical scenarios of transitions between normal and paroxysmal state in epilepsy. We assume that some epileptic neural network are bistable i.e., they feature two operational states, ictal and interictal that co-exist. The transitions between these two states may occur according to a Poisson process, a random walk process or as a result of deterministic time-dependent mechanisms. We analyze data from animal models of absence epilepsy, human epilepsies and in vitro models. The distributions of durations of ictal and interictal epochs are fitted with a gamma distribution. On the basis of qualitative features of the fits, we identify the dynamical processes that may have generated the underlying data. The analysis showed that the following hold. 1) The dynamics of ictal epochs differ from those of interictal states. 2) Seizure initiation can be accounted for by a random walk process while seizure termination is often mediated by deterministic mechanisms. 3) In certain cases, the transitions between ictal and interictal states can be modeled by a Poisson process operating in a bistable network. These results imply that exact prediction of seizure occurrence is not possible but termination of an ictal state by appropriate counter stimulation might be feasible.9 p
    corecore