17 research outputs found
Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration
Mutations in the gene coding for Sequestosome 1 (SQSTM1) have been genetically associated with amyotrophic lateral sclerosis (ALS) and Paget disease of bone. In the present study, we analyzed the SQSTM1 coding sequence for mutations in an extended cohort of 1,808 patients with frontotemporal lobar degeneration (FTLD), ascertained within the European Early-Onset Dementia consortium. As control dataset, we sequenced 1,625 European control individuals and analyzed whole-exome sequence data of 2,274 German individuals (total n = 3,899). Association of rare SQSTM1 mutations was calculated in a meta-analysis of 4,332 FTLD and 10,240 control alleles. We identified 25 coding variants in FTLD patients of which 10 have not been described. Fifteen mutations were absent in the control individuals (carrier frequency < 0.00026) whilst the others were rare in both patients and control individuals. When pooling all variants with a minor allele frequency < 0.01, an overall frequency of 3.2 % was calculated in patients. Rare variant association analysis between patients and controls showed no difference over the whole protein, but suggested that rare mutations clustering in the UBA domain of SQSTM1 may influence disease susceptibility by doubling the risk for FTLD (RR = 2.18 [95 % CI 1.24-3.85]; corrected p value = 0.042). Detailed histopathology demonstrated that mutations in SQSTM1 associate with widespread neuronal and glial phospho-TDP-43 pathology. With this study, we provide further evidence for a putative role of rare mutations in SQSTM1 in the genetic etiology of FTLD and showed that, comparable to other FTLD/ALS genes, SQSTM1 mutations are associated with TDP-43 pathology
No supportive evidence for TIA1 gene mutations in a European cohort of ALS-FTD spectrum patients
We evaluated the genetic contribution of the T cell-erestricted intracellular antigen-1 gene (TIA1) in a European cohort of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) patients. Exonic resequencing of TIA1 in 1120 patients (693 FTD, 341 ALS, 86 FTD-ALS) and 1039 controls identified in total 5 rare heterozygous missense variants, affecting the TIA1 low-complexity domain (LCD). Only 1 missense variant, p.Met290Thr, identified in a familial FTD patient with disease onset at 64 years, was absent from controls yet received a combined annotation-dependent depletion score of 11.42. By contrast, 3 of the 4 variants also detected in unaffected controls, p.Val294Glu, p.Gln318Arg, and p.Ala381Thr, had combined annotation-dependent depletion scores greater than 20. Our findings in a large European patient-control series indicate that variants in TIA1 are not a common cause of ALS and FTD. The observation of recurring TIA1 missense variants in unaffected individuals lead us to conclude that the exact genetic contribution of TIA1 to ALS and FTD pathogenesis remains to be further elucidated
Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degenerations: Similarities in Genetic Background
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal progressive degenerative disorder of motor neurons that overlaps with frontotemporal lobar degeneration (FTLD) clinically, morphologically, and genetically. Although many distinct mutations in various genes are known to cause amyotrophic lateral sclerosis, it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Many of the gene mutations are in proteins that share similar functions. They can be grouped into those associated with cell axon dynamics and those associated with cellular phagocytic machinery, namely protein aggregation and metabolism, apoptosis, and intracellular nucleic acid transport. Analysis of pathways implicated by mutant ALS genes has provided new insights into the pathogenesis of both familial forms of ALS (fALS) and sporadic forms (sALS), although, regrettably, this has not yet yielded definitive treatments. Many genes play an important role, with TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly, C9orf72 being critical genetic players in these neurological disorders. In this mini-review, we will focus on the molecular mechanisms of these two diseases.</jats:p
Amyotrophic Lateral Sclerosis and Frontotemporal Lobar Degenerations: Similarities in Genetic Background
Amyotrophic lateral sclerosis (ALS) is a devastating, uniformly lethal progressive degenerative disorder of motor neurons that overlaps with frontotemporal lobar degeneration (FTLD) clinically, morphologically, and genetically. Although many distinct mutations in various genes are known to cause amyotrophic lateral sclerosis, it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Many of the gene mutations are in proteins that share similar functions. They can be grouped into those associated with cell axon dynamics and those associated with cellular phagocytic machinery, namely protein aggregation and metabolism, apoptosis, and intracellular nucleic acid transport. Analysis of pathways implicated by mutant ALS genes has provided new insights into the pathogenesis of both familial forms of ALS (fALS) and sporadic forms (sALS), although, regrettably, this has not yet yielded definitive treatments. Many genes play an important role, with TARDBP, SQSTM1, VCP, FUS, TBK1, CHCHD10, and most importantly, C9orf72 being critical genetic players in these neurological disorders. In this mini-review, we will focus on the molecular mechanisms of these two diseases
Human Prion Disorders: Review of the Current Literature and a Twenty-Year Experience of the National Surveillance Center in the Czech Republic
Human prion disorders (transmissible spongiform encephalopathies, TSEs) are unique, progressive, and fatal neurodegenerative diseases caused by aggregation of misfolded prion protein in neuronal tissue. Due to the potential transmission, human TSEs are under active surveillance in a majority of countries; in the Czech Republic data are centralized at the National surveillance center (NRL) which has a clinical and a neuropathological subdivision. The aim of our article is to review current knowledge about human TSEs and summarize the experience of active surveillance of human prion diseases in the Czech Republic during the last 20 years. Possible or probable TSEs undergo a mandatory autopsy using a standardized protocol. From 2001 to 2020, 305 cases of sporadic and genetic TSEs including 8 rare cases of Gerstmann–Sträussler–Scheinker syndrome (GSS) were confirmed. Additionally, in the Czech Republic, brain samples from all corneal donors have been tested by the NRL immunology laboratory to increase the safety of corneal transplants since January 2007. All tested 6590 corneal donor brain tissue samples were negative for prion protein deposits. Moreover, the routine use of diagnostic criteria including biomarkers are robust enough, and not even the COVID-19 pandemic has negatively impacted TSEs surveillance in the Czech Republic
Human Prion Disorders: Review of the Current Literature and a Twenty-Year Experience of the National Surveillance Center in the Czech Republic
Human prion disorders (transmissible spongiform encephalopathies, TSEs) are unique, progressive, and fatal neurodegenerative diseases caused by aggregation of misfolded prion protein in neuronal tissue. Due to the potential transmission, human TSEs are under active surveillance in a majority of countries; in the Czech Republic data are centralized at the National surveillance center (NRL) which has a clinical and a neuropathological subdivision. The aim of our article is to review current knowledge about human TSEs and summarize the experience of active surveillance of human prion diseases in the Czech Republic during the last 20 years. Possible or probable TSEs undergo a mandatory autopsy using a standardized protocol. From 2001 to 2020, 305 cases of sporadic and genetic TSEs including 8 rare cases of Gerstmann–Sträussler–Scheinker syndrome (GSS) were confirmed. Additionally, in the Czech Republic, brain samples from all corneal donors have been tested by the NRL immunology laboratory to increase the safety of corneal transplants since January 2007. All tested 6590 corneal donor brain tissue samples were negative for prion protein deposits. Moreover, the routine use of diagnostic criteria including biomarkers are robust enough, and not even the COVID-19 pandemic has negatively impacted TSEs surveillance in the Czech Republic.</jats:p
Biomarkers Analysis and Clinical Manifestations in Comorbid Creutzfeldt–Jakob Disease: A Retrospective Study in 215 Autopsy Cases
Creutzfeldt–Jakob disease (CJD), the most common human prion disorder, may occur as “pure” neurodegeneration with isolated prion deposits in the brain tissue; however, comorbid cases with different concomitant neurodegenerative diseases have been reported. This retrospective study examined correlations of clinical, neuropathological, molecular-genetic, immunological, and neuroimaging biomarkers in pure and comorbid CJD. A total of 215 patients have been diagnosed with CJD during the last ten years by the Czech National Center for Prion Disorder Surveillance. Data were collected from all patients with respect to diagnostic criteria for probable CJD, including clinical description, EEG, MRI, and CSF findings. A detailed neuropathological analysis uncovered that only 11.16% were “pure” CJD, while 62.79% had comorbid tauopathy, 20.47% had Alzheimer’s disease, 3.26% had frontotemporal lobar degeneration, and 2.33% had synucleinopathy. The comorbid subgroup analysis revealed that tauopathy was linked to putaminal hyperintensity on MRIs, and AD mainly impacted the age of onset, hippocampal atrophy on MRIs, and beta-amyloid levels in the CSF. The retrospective data analysis found a surprisingly high proportion of comorbid neuropathologies; only 11% of cases were verified as “pure” CJD, i.e., lacking hallmarks of other neurodegenerations. Comorbid neuropathologies can impact disease manifestation and can complicate the clinical diagnosis of CJD.</jats:p
Sporadic Creutzfeldt-Jakob Disease and Other Proteinopathies in Comorbidity
Background: Sporadic Creutzfeldt–Jakob disease (sCJD) is the most common type of a group of transmissible spongiform encephalopathies (prion diseases). The etiology of the sporadic form of CJD is still unclear. sCJD can occur in combination with other neurodegenerative diseases, which further complicates the diagnosis. Alzheimer's disease (AD), e.g., is often seen in conjunction with sCJD.Method: In this study, we performed a systematic analysis of 15 genes related to the most important neurodegenerative diseases - AD, frontotemporal dementia, amyotrophic lateral sclerosis, prion disease, and Parkinson's disease - in a cohort of sCJD and sCJD in comorbidity with AD and primary age-related proteinopathy (PART). A total of 30 neuropathologically verified cases of sCJD with and without additional proteinopathies were included in the study. In addition, we compared microtubule-associated protein tau (MAPT) haplotypes between sCJD patients and patients with sCJD and PART or sCJD and AD. Then we studied the interaction between the Apolipoprotein E gene (APOE) and PRNP in sCJD patients.Results: We did not find any causal mutations in the neurodegenerative disease genes. We did detect a p.E318G missense variant of uncertain significance (VUS) in PSEN1 in three patients. In PRNP, we also found a previously described non-pathogenic insertion (p.P84_Q91Q).Conclusion: Our pilot study failed to find any critical differences between pure sCJD and sCJD in conjunction with other comorbid neurodegenerative diseases. Further investigations are needed to better understand this phenomenon.</jats:p
Biomarkers Analysis and Clinical Manifestations in Comorbid Creutzfeldt–Jakob Disease: A Retrospective Study in 215 Autopsy Cases
Creutzfeldt–Jakob disease (CJD), the most common human prion disorder, may occur as “pure” neurodegeneration with isolated prion deposits in the brain tissue; however, comorbid cases with different concomitant neurodegenerative diseases have been reported. This retrospective study examined correlations of clinical, neuropathological, molecular-genetic, immunological, and neuroimaging biomarkers in pure and comorbid CJD. A total of 215 patients have been diagnosed with CJD during the last ten years by the Czech National Center for Prion Disorder Surveillance. Data were collected from all patients with respect to diagnostic criteria for probable CJD, including clinical description, EEG, MRI, and CSF findings. A detailed neuropathological analysis uncovered that only 11.16% were “pure” CJD, while 62.79% had comorbid tauopathy, 20.47% had Alzheimer’s disease, 3.26% had frontotemporal lobar degeneration, and 2.33% had synucleinopathy. The comorbid subgroup analysis revealed that tauopathy was linked to putaminal hyperintensity on MRIs, and AD mainly impacted the age of onset, hippocampal atrophy on MRIs, and beta-amyloid levels in the CSF. The retrospective data analysis found a surprisingly high proportion of comorbid neuropathologies; only 11% of cases were verified as “pure” CJD, i.e., lacking hallmarks of other neurodegenerations. Comorbid neuropathologies can impact disease manifestation and can complicate the clinical diagnosis of CJD
