15 research outputs found

    Sensitivity of the COHERENT experiment to accelerator-produced dark matter

    No full text
    © 2020 authors. Published by the American Physical Society. The COHERENT experiment is well poised to test sub-GeV dark matter models using detectors sensitive to coherent elastic neutrino-nucleus scattering (CEvNS) in the pi(+) decay-at-rest (pi-DAR) neutrino beam produced by the Spallation Neutron Source. We show a planned 750-kg single-phase liquid argon scintillation detector would place leading limits on scalar light dark matter models for dark matter particles produced through vector and leptophobic portals in the absence of other effects beyond the standard model. The characteristic timing profile of a pi-DAR beam allows a unique opportunity for constraining systematic uncertainties on the standard model background using a time window where dark matter signal is not expected, enhancing expected sensitivity. Additionally, we discuss future prospects which show that an on-axis CEvNS detector would probe the thermal abundance for a scalar dark matter candidate for all couplings alpha&apos; <= 1 for 15 MeV dark matter with just 1.0 tonne-yr of exposure with increased exposure testing a wider range of dark matter masses and spins11Nsciescopu

    First constraint on coherent elastic neutrino-nucleus scattering in argon

    Get PDF
    Coherent elastic neutrino-nucleus scattering (CEvNS) is calculated to be the dominant neutrino scattering channel for neutrinos of energy E-nu < 100 MeV. We report a limit for this process from data collected in an engineering run of the 29 kg CENNS-10 liquid argon detector located 27.5 m from the pion decay-at-rest neutrino source at the Oak Ridge National Laboratory Spallation Neutron Source (SNS) with 4.2 x 10(22) protons on target. The dataset provided constraints on beam-related backgrounds critical for future measurements and yielded < 7.4 candidate CEvNS events which implies a cross section for the process, averaged over the SNS pion decay-at-rest flux, of < 3.4 x 10(-39) cm(2), a limit within twice the Standard Model prediction. This is the first limit on CEvNS from an argon nucleus and confirms the earlier CsI[Na] nonstandard neutrino interaction constraints from the collaboration. This run demonstrated the feasibility of the ongoing experimental effort to detect CEvNS with liquid argon. c. American Physical Society11Nsciescopu
    corecore