18 research outputs found
Suitable Electrode Choice for Robotic-Assisted Cochlear Implant Surgery: A Systematic Literature Review of Manual Electrode Insertion Adverse Events
BACKGROUND AND OBJECTIVE: The cochlear implant (CI) electrode insertion process is a key step in CI surgery. One of the aims of advances in robotic-assisted CI surgery (RACIS) is to realize better cochlear structure preservation and to precisely control insertion. The aim of this literature review is to gain insight into electrode selection for RACIS by acquiring a thorough knowledge of electrode insertion and related complications from classic CI surgery involving a manual electrode insertion process. METHODS: A systematic electronic search of the literature was carried out using PubMed, Scopus, Cochrane, and Web of Science to find relevant literature on electrode tip fold over (ETFO), electrode scalar deviation (ESD), and electrode migration (EM) from both pre-shaped and straight electrode types. RESULTS: A total of 82 studies that include 8,603 ears implanted with a CI, i.e., pre-shaped (4,869) and straight electrodes (3,734), were evaluated. The rate of ETFO (25 studies, 2,335 ears), ESD (39 studies, 3,073 ears), and EM (18 studies, 3,195 ears) was determined. An incidence rate (±95% CI) of 5.38% (4.4–6.6%) of ETFO, 28.6% (26.6–30.6%) of ESD, and 0.53% (0.2–1.1%) of EM is associated with pre-shaped electrodes, whereas with straight electrodes it was 0.51% (0.1–1.3%), 11% (9.2–13.0%), and 3.2% (2.5–3.95%), respectively. The differences between the pre-shaped and straight electrode types are highly significant (p < 0.001). Laboratory experiments show evidence that robotic insertions of electrodes are less traumatic than manual insertions. The influence of round window (RW) vs. cochleostomy (Coch) was not assessed. CONCLUSION: Considering the current electrode designs available and the reported incidence of insertion complications, the use of straight electrodes in RACIS and conventional CI surgery (and manual insertion) appears to be less traumatic to intracochlear structures compared with pre-shaped electrodes. However, EM of straight electrodes should be anticipated. RACIS has the potential to reduce these complications
Electrically evoked compound action potentials are different depending on the site of cochlear stimulation.
One of the many parameters that can affect cochlear implant (CI) users' performance is the site of presentation of electrical stimulation, from the CI, to the auditory nerve. Evoked compound action potential (ECAP) measurements are commonly used to verify nerve function by stimulating one electrode contact in the cochlea and recording the resulting action potentials on the other contacts of the electrode array. The present study aimed to determine if the ECAP amplitude differs between the apical, middle, and basal region of the cochlea, if double peak potentials were more likely in the apex than the basal region of the cochlea, and if there were differences in the ECAP threshold and recovery function across the cochlea. ECAP measurements were performed in the apical, middle, and basal region of the cochlea at fixed sites of stimulation with varying recording electrodes. One hundred and forty one adult subjects with severe to profound sensorineural hearing loss fitted with a Standard or FLEX(SOFT) electrode were included in this study. ECAP responses were captured using MAESTRO System Software (MED-EL). The ECAP amplitude, threshold, and slope were determined using amplitude growth sequences. The 50% recovery rate was assessed using independent single sequences that have two stimulation pulses (a masker and a probe pulse) separated by a variable inter-pulse interval. For all recordings, ECAP peaks were annotated semi-automatically. ECAP amplitudes were greater upon stimulation of the apical region compared to the basal region of the cochlea. ECAP slopes were steeper in the apical region compared to the basal region of the cochlea and ECAP thresholds were lower in the middle region compared to the basal region of the cochlea. The incidence of double peaks was greater upon stimulation of the apical region compared to the basal region of the cochlea. This data indicates that the site and intensity of cochlear stimulation affect ECAP properties
Electrically evoked compound action potentials are different depending on the site of cochlear stimulation
One of the many parameters that can affect cochlear implant (CI) users' performance is the site of presentation of electrical stimulation, from the CI, to the auditory nerve. Evoked compound action potential (ECAP) measurements are commonly used to verify nerve function by stimulating one electrode contact in the cochlea and recording the resulting action potentials on the other contacts of the electrode array. The present study aimed to determine if the ECAP amplitude differs between the apical, middle, and basal region of the cochlea, if double peak potentials were more likely in the apex than the basal region of the cochlea, and if there were differences in the ECAP threshold and recovery function across the cochlea. ECAP measurements were performed in the apical, middle, and basal region of the cochlea at fixed sites of stimulation with varying recording electrodes. One hundred and forty one adult subjects with severe to profound sensorineural hearing loss fitted with a Standard or FLEX(SOFT) electrode were included in this study. ECAP responses were captured using MAESTRO System Software (MED-EL). The ECAP amplitude, threshold, and slope were determined using amplitude growth sequences. The 50% recovery rate was assessed using independent single sequences that have two stimulation pulses (a masker and a probe pulse) separated by a variable inter-pulse interval. For all recordings, ECAP peaks were annotated semi-automatically. ECAP amplitudes were greater upon stimulation of the apical region compared to the basal region of the cochlea. ECAP slopes were steeper in the apical region compared to the basal region of the cochlea and ECAP thresholds were lower in the middle region compared to the basal region of the cochlea. The incidence of double peaks was greater upon stimulation of the apical region compared to the basal region of the cochlea. This data indicates that the site and intensity of cochlear stimulation affect ECAP properties
Audiological outcome measures with the BONEBRIDGE transcutaneous bone conduction hearing implant: impact of noise, reverberation and signal processing features
Objective: To assess the performance of an active transcutaneous implantable-bone conduction device (TI-BCD), and to evaluate the benefit of device digital signal processing (DSP) features in challenging listening environments. Design: Participants were tested at 1- and 3-month post-activation of the TI-BCD. At each session, aided and unaided phoneme perception was assessed using the Ling-6 test. Speech reception thresholds (SRTs) and quality ratings of speech and music samples were collected in noisy and reverberant environments, with and without the DSP features. Self-assessment of the device performance was obtained using the Abbreviated Profile of Hearing Aid Benefit (APHAB) questionnaire. Study sample: Six adults with conductive or mixed hearing loss. Results: Average SRTs were 2.9 and 12.3 dB in low and high reverberation environments, respectively, which improved to −1.7 and 8.7 dB, respectively with the DSP features. In addition, speech quality ratings improved by 23 points with the DSP features when averaged across all environmental conditions. Improvement scores on APHAB scales revealed a statistically significant aided benefit. Conclusions: Noise and reverberation significantly impacted speech recognition performance and perceived sound quality. DSP features (directional microphone processing and adaptive noise reduction) significantly enhanced subjects’ performance in these challenging listening environments
Otology/Neurotology recommendations – Choosing Wisely campaign
The Choosing Wisely Canada Campaign aims to raise awareness amongst physicians and patients regarding unnecessary tests and treatment. The otology/neurotology subspecialty group within the Canadian Society of Otolaryngology – Head & Neck Society developed a list of five common otologic presentations to help physicians deliver high quality effective care: (1) Don’t order specialized audiometric and vestibular testing to screen for peripheral vestibular disease, (2) Don’t perform computed tomography or blood work in the evaluation of sudden sensorineural hearing loss, (3) Don’t perform auditory brain responses (ABR) in patients with asymmetrical hearing loss, (4) Don’t prescribe oral antibiotics as first line treatment for patients with painless otorrhea associated with tympanic membrane perforation or tympanostomy tube, and (5) Don’t perform particle repositioning maneuvers without a clinical diagnosis of posterior canal benign paroxysmal positional vertigo.Medicine, Faculty ofNon UBCSurgery, Department ofReviewedFacult
Intratympanic corticosteroids for sudden sensorineural hearing loss
BACKGROUND: Idiopathic sudden sensorineural hearing loss (ISSNHL) is common, and defined as a sudden decrease in sensorineural hearing sensitivity of unknown aetiology. Systemic corticosteroids are widely used, however their value remains unclear. Intratympanic injections of corticosteroids have become increasingly common in the treatment of ISSNHL. OBJECTIVES: To assess the effects of intratympanic corticosteroids in people with ISSNHL. SEARCH METHODS: The Cochrane ENT Information Specialist searched the Cochrane ENT Trials Register; CENTRAL (2021, Issue 9); PubMed; Ovid Embase; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials (search date 23 September 2021). SELECTION CRITERIA: We included randomised controlled trials (RCTs) involving people with ISSNHL and follow-up of over a week. Intratympanic corticosteroids were given as primary or secondary treatment (after failure of systemic therapy). DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods, including GRADE to assess the certainty of the evidence. Our primary outcome was change in hearing threshold with pure tone audiometry. Secondary outcomes included the proportion of people whose hearing improved, final hearing threshold, speech audiometry, frequency-specific hearing changes and adverse effects. MAIN RESULTS: We included 30 studies, comprising 2133 analysed participants. Some studies had more than two treatment arms and were therefore relevant to several comparisons. Studies investigated intratympanic corticosteroids as either primary (initial) therapy or secondary (rescue) therapy after failure of initial treatment. 1. Intratympanic corticosteroids versus systemic corticosteroids as primary therapy We identified 16 studies (1108 participants). Intratympanic therapy may result in little to no improvement in the change in hearing threshold (mean difference (MD) -5.93 dB better, 95% confidence interval (CI) -7.61 to -4.26; 10 studies; 701 participants; low-certainty). We found little to no difference in the proportion of participants whose hearing was improved (risk ratio (RR) 1.04, 95% CI 0.97 to 1.12; 14 studies; 972 participants; moderate-certainty). Intratympanic therapy may result in little to no difference in the final hearing threshold (MD -3.31 dB, 95% CI -6.16 to -0.47; 7 studies; 516 participants; low-certainty). Intratympanic therapy may increase the number of people who experience vertigo or dizziness (RR 2.53, 95% CI 1.41 to 4.54; 1 study; 250 participants; low-certainty) and probably increases the number of people with ear pain (RR 15.68, 95% CI 6.22 to 39.49; 2 studies; 289 participants; moderate-certainty). It also resulted in persistent tympanic membrane perforation (range 0% to 3.9%; 3 studies; 359 participants; very low-certainty), vertigo/dizziness at the time of injection (1% to 21%, 3 studies; 197 participants; very low-certainty) and ear pain at the time of injection (10.5% to 27.1%; 2 studies; 289 participants; low-certainty). 2. Intratympanic plus systemic corticosteroids (combined therapy) versus systemic corticosteroids alone as primary therapy We identified 10 studies (788 participants). Combined therapy may have a small effect on the change in hearing threshold (MD -8.55 dB better, 95% CI -12.48 to -4.61; 6 studies; 435 participants; low-certainty). The evidence is very uncertain as to whether combined therapy changes the proportion of participants whose hearing is improved (RR 1.27, 95% CI 1.15 to 1.41; 10 studies; 788 participants; very low-certainty). Combined therapy may result in slightly lower (more favourable) final hearing thresholds but the evidence is very uncertain, and it is not clear whether the change would be important to patients (MD -9.11 dB, 95% CI -16.56 to -1.67; 3 studies; 194 participants; very low-certainty). Some adverse effects only occurred in those who received combined therapy. These included persistent tympanic membrane perforation (range 0% to 5.5%; 5 studies; 474 participants; very low-certainty), vertigo or dizziness at the time of injection (range 0% to 8.1%; 4 studies; 341 participants; very low-certainty) and ear pain at the time of injection (13.5%; 1 study; 73 participants; very low-certainty). 3. Intratympanic corticosteroids versus no treatment or placebo as secondary therapy We identified seven studies (279 participants). Intratympanic therapy may have a small effect on the change in hearing threshold (MD -9.07 dB better, 95% CI -11.47 to -6.66; 7 studies; 280 participants; low-certainty). Intratympanic therapy may result in a much higher proportion of participants whose hearing is improved (RR 5.55, 95% CI 2.89 to 10.68; 6 studies; 232 participants; low-certainty). Intratympanic therapy may result in lower (more favourable) final hearing thresholds (MD -11.09 dB, 95% CI -17.46 to -4.72; 5 studies; 203 participants; low-certainty). Some adverse effects only occurred in those who received intratympanic injection. These included persistent tympanic membrane perforation (range 0% to 4.2%; 5 studies; 185 participants; very low-certainty), vertigo or dizziness at the time of injection (range 6.7% to 33%; 3 studies; 128 participants; very low-certainty) and ear pain at the time of injection (0%; 1 study; 44 participants; very low-certainty). 4. Intratympanic plus systemic corticosteroids (combined therapy) versus systemic corticosteroids alone as secondary therapy We identified one study with 76 participants. Change in hearing threshold was not reported. Combined therapy may result in a higher proportion with hearing improvement, but the evidence is very uncertain (RR 2.24, 95% CI 1.10 to 4.55; very low-certainty). Adverse effects were poorly reported with only data for persistent tympanic membrane perforation (rate 8.1%, very low-certainty). AUTHORS' CONCLUSIONS: Most of the evidence in this review is low- or very low-certainty, therefore it is likely that further studies may change our conclusions.  For primary therapy, intratympanic corticosteroids may have little or no effect compared with systemic corticosteroids. There may be a slight benefit from combined treatment when compared with systemic treatment alone, but the evidence is uncertain. For secondary therapy, there is low-certainty evidence that intratympanic corticosteroids, when compared to no treatment or placebo, may result in a much higher proportion of participants whose hearing is improved, but may only have a small effect on the change in hearing threshold. It is very uncertain whether there is additional benefit from combined treatment over systemic steroids alone. Although adverse effects were poorly reported, the different risk profiles of intratympanic treatment (including tympanic membrane perforation, pain and dizziness/vertigo) and systemic treatment (for example, blood glucose problems) should be considered when selecting appropriate treatment
Effects of bimodal and bilateral cochlear implant use on a nonauditory working memory task: Reading span tests over 2 years following cochlear implantation
Purpose: A growing body of evidence indicates that treatment of hearing loss by provision of hearing aids leads to improvements in auditory and visual working memory. The purpose of this study was to assess whether similar working memory benefits are observed following provision of cochlear implants (CIs). Method: Fifteen adults with postlingually acquired severe bilateral sensorineural hearing loss completed the prospective longitudinal study. Participants were candidates for bilateral cochlear implantation with some aidable hearing in each ear. Implantation surgeries were carried out sequentially, approximately 1 year apart. Working memory was measured with the visual Reading Span Test (Daneman & Carpenter, 1980) at 5 time points: pre-operatively following a 6-month bilateral hearing aid trial, after 6 and 12 months of bimodal (CI plus contralateral hearing aid) listening experience following the 1st CI surgery and activation, and again after 6 and 12 months of bilateral CI listening experience following the 2nd CI surgery and activation. Results: Compared to the preoperative baseline, CI listening experience yielded significant improvements in participants’ ability to recall test words in the correct serial order after 12 months in the bimodal condition. Individual performance outcomes were variable, but almost all participants showed increases in task performance over the course of the study. Conclusions: These results suggest that, similar to appropriate interventions with hearing aids, treatment of hearing loss with CIs can yield working memory benefits. A likely mechanism is the freeing of cognitive resources previously devoted to effortful listening