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Background and Objective: The cochlear implant (CI) electrode insertion process is a

key step in CI surgery. One of the aims of advances in robotic-assisted CI surgery (RACIS)

is to realize better cochlear structure preservation and to precisely control insertion.

The aim of this literature review is to gain insight into electrode selection for RACIS by
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acquiring a thorough knowledge of electrode insertion and related complications from

classic CI surgery involving a manual electrode insertion process.

Methods: A systematic electronic search of the literature was carried out using PubMed,

Scopus, Cochrane, and Web of Science to find relevant literature on electrode tip fold

over (ETFO), electrode scalar deviation (ESD), and electrode migration (EM) from both

pre-shaped and straight electrode types.

Results: A total of 82 studies that include 8,603 ears implanted with a CI, i.e.,

pre-shaped (4,869) and straight electrodes (3,734), were evaluated. The rate of ETFO

(25 studies, 2,335 ears), ESD (39 studies, 3,073 ears), and EM (18 studies, 3,195 ears)

was determined. An incidence rate (±95% CI) of 5.38% (4.4–6.6%) of ETFO, 28.6%

(26.6–30.6%) of ESD, and 0.53% (0.2–1.1%) of EM is associated with pre-shaped

electrodes, whereas with straight electrodes it was 0.51% (0.1–1.3%), 11% (9.2–13.0%),

and 3.2% (2.5–3.95%), respectively. The differences between the pre-shaped and

straight electrode types are highly significant (p < 0.001). Laboratory experiments show

evidence that robotic insertions of electrodes are less traumatic than manual insertions.

The influence of round window (RW) vs. cochleostomy (Coch) was not assessed.

Conclusion: Considering the current electrode designs available and the reported

incidence of insertion complications, the use of straight electrodes in RACIS and

conventional CI surgery (and manual insertion) appears to be less traumatic to

intracochlear structures compared with pre-shaped electrodes. However, EM of straight

electrodes should be anticipated. RACIS has the potential to reduce these complications.

Keywords: robotic assisted cochlear implant surgery, pre-shaped electrode, straight electrode, tip fold-over,

scalar deviation, electrode migration

INTRODUCTION

Cochlear implants (CIs) are widely accepted as the state-of-
the-art hearing solution for partial-to-profound sensorineural
hearing loss (SNHL) in adults (1) and children (2). The implant’s
stimulator-receiver is surgically placed under the skin and rests
on the surface of the skull. While the electrode array is placed
within the cochlea, the excess electrode lead is left coiled in
the surgically drilled mastoid cavity (3). The speech processor
converts the acoustical signals into electrical signals and is worn
externally. The maximum benefit for patients is expected when
the electrode array is optimally placed fully inside scala tympani
(ST) (or even in scala vestibuli (SV) in special cases of ST
ossification) without any degree of scalar deviation, so as to create
an effective electrode-neural interface (4).

Intra-cochlear electrode insertion is considered one of the
crucial steps of a successful CI surgery. In particular, studies
have suggested that slow steady insertion (achieved more easily
with robotic insertion) can reduce pressure changes within
the cochlea (5, 6), reduce insertion forces (7), and increase
the likelihood of an in-axis insertion into ST and improve
hearing outcomes (8). Robotic-assisted cochlear implant surgery
(RACIS) aims to optimize this insertion process by (1) computer
control of insertion speed and by applying insertion forces
more steadily and smoothly, (2) defining the angle with which
the electrode is inserted into the ST, and (3) improving the

estimated insertion depth to minimize trauma and provide better
hearing outcomes.

Robotic-assisted cochlear implant surgery has the potential
of being included in the surgical armamentarium in the future.
Before RACIS can become the standard approach for cochlear
implantation, aspects of clinical benefits, cost, and duration of
the procedure still need to be addressed (9). Currently, there
are three such systems with either Conformité Européenne (CE)
or Food and Drug Administration (FDA) approval and a new
system is under clinical trial. RobOtol R© is a French innovation
that recently received the CE mark (10) and the iotaSOFT R©

insertion system received the American FDA approval in October
2021 (11). These two systems offer automated electrode insertion
support after manual drilling of the temporal bone to reach the
round window (RW) niche. The third system is HEARO R©, a
Swiss innovation which drills a narrow tunnel in the mastoid
bone and through the facial recess (12, 13) to reach the RW
through which the electrode is inserted (14). The HEARO R©

system received a CE mark in the year 2020. A new robotic
system called Rosa R©, another French innovation that offers
robotic-controlled drilling of themastoid and electrode insertion,
has been recently evaluated for safety and accuracy in live
patients (15). RoboJig is a German innovation currently under
development. The robot drills a narrow tunnel in the mastoid
guided by a jig that is developed on-site and is based on the
patient’s specific anatomy. It includes an automated insertion
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TABLE 1 | Search terms used in the identification of relevant literature to perform

the systematic literature review.

Electrode insertion

related complications

Search terms

Electrode tip fold over

(ETFO)

Cochlear implant electrode tip fold over or cochlear

implant electrode tip roll over.

Electrode scalar deviation

(ESD)

Cochlear implant electrode scalar deviation or

cochlear implant electrode scalar location or

cochlear implant electrode scalar position.

Electrode migration (EM) Cochlear implant electrode-migration

tool for the electrode (16). Recent reports in a series of patients
demonstrate the clinical feasibility and effectiveness of these
robotic systems in accommodating various CI electrode variants
(14, 15, 17, 18).

The aim of RACIS is to eliminate or minimize intracochlear
trauma during electrode insertion. Several electrode array
insertion complications with a negative influence on post-
operative outcomes have been reported after manual insertion.
These include electrode tip fold over (ETFO) (19), electrode array
scalar deviation (ESD) (20), and electrode array migration (EM)
or slippage (21). A recent report on the application of RACIS also
included one of the electrode-related complications mentioned
above (17). Electrode variants that are currently available can
be classified as either pre-shaped or straight electrode types
(22). Up-to-date knowledge of the literature on the rate of these
various electrode insertion complications by electrode type could
facilitate electrode array selection for RACIS and for manual
insertion. Therefore, this article is aimed to provide a systematic
literature review on electrode-related insertion complications for
both pre-shaped and straight electrodes.

METHODS

Study Design
Following the recommendations of the Preferred Reporting
Items for Systematic Reviews and Meta-Analysis (PRISMA) (23),
the literature was systematically reviewed to establish the rate of
ETFO, ESD, and EM for both pre-shaped and straight electrodes.

Search Strategy and Study Selection
To perform the systematic literature review, a search for articles
in PubMed, Scopus, Cochrane, and Web of Science was carried
out using appropriate search terms (as listed in Table 1) by the
first two authors PVH and PR. Articles published up to October
31, 2021 in English and German languages were considered for
analysis. In addition, a manual search for relevant literature
reviews and random checking of PubMed and Google Scholar
were conducted using pertinent key terms. The first two authors
independently screened titles and abstracts to select potential full-
text articles according to the inclusion criteria. Exclusion criteria
included review articles, surgical methodological studies, studies
in languages other than English and German, studies using

other approaches than through the posterior tympanotomy, and
studies on auditory brain stem implants.

Data Extraction
A template in Microsoft Excel (www.microsoft.com/en-
us/microsoft-365/excel) was created to record the extracted data,
i.e., the first author of the study, study type, analyzing methods,
the total number of ears implanted with CI, the number of ears
implanted with each type of electrode, and, finally, the number
of insertions with ETFO, ESD, and EM per electrode type.

Data Analysis and Statistics
The rate of ETFO, ESD, and EM was calculated by dividing the
number of ears with the associated issue by the total number of
ears implanted with a specific type of electrode. Significance was
calculated with the test for the difference of 2 proportions and
95% CIs, both implemented in MiniTab R© (© 2019 Minitab, LLC,
State College, PA, USA).

Risk of Bias Assessment
The risk of bias was independently assessed by the third
and the last authors (LL and JG). Included studies were
assessed using the Risk of Bias in Non-randomized Studies of
Interventions (ROBINS-I) tool (24). This tool contains seven
items judging the risk of bias due to confounding, study
participant selection, classification of interventions, deviations
from intended intervention, missing data, measurement of
outcomes, and selection of reported results. Each of the seven
items in included studies was judged low, moderate, or high
risk. Inner ear malformation was considered as the one of
the confounding factors for ETFO, whereas electrode type was
considered as the confounding factor for ESD and EM. Results
of risk of bias assessment were graphically summarized using
Microsoft Excel (https://www.microsoft.com/en-us/microsoft-
365/excel).

RESULTS

Search Results
Figure 1 details the systematic literature review process followed
in the identification of relevant articles. A total of 37 articles on
ETFO, 96 articles on ESD, and 38 articles on EM were identified
using the search terms. After a thorough review of the abstract
for search terms, 25 articles on ETFO, 39 articles on ESD, and 18
articles on EM were included in the evaluation of incidence rate.

Risk of Bias
ROBINS-I—Risk of Bias Assessment
The risk of bias assessment using the ROBINS-I tool is
summarized in Figure 2. Themajority of the studies included had
a noticeable lower risk of bias as represented by green bars. All the
studies identified specifically under all three electrode insertion
complications had a low risk of bias for the reported result and
for deviations from the intended intervention.
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FIGURE 1 | Literature review process utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

FIGURE 2 | Risk of bias graph: review authors’ judgment presented as percentages across all included studies about each risk of bias item for electrode tip fold over

(ETFO) (A), electrode scalar deviation (ESD) (B), and electrode migration (EM) (C).

Confounding Bias
For the ETFO, cystic ear anatomy was considered a confounding
factor, because cystic cochlear anatomy increases the chances of
ETFO. Fourteen studies out of 25 did not reveal if the images of
the selected patients were analyzed for any degree of anatomical
deviation from the normal anatomy, suggesting those studies had
a moderate risk of bias (studies 29–32, 34, 36–38, 40, 41, 43,
45, and 46). One study included the patients with the inner ear
malformations and was graded with a high risk of bias (study 47).

The type of electrode was taken as the confounding factor for ESD
and EM. Electrode stiffness could increase the chances for ESD,
and the pre-curved shape of the electrode would hook around
the modiolar wall offering a natural fixation and minimizing
the chances of EM. All the studies identified within ESD and
EM issues reported the electrode type, suggesting a low risk of
bias. The different sites and techniques of entering the ST, e.g.,
Cochleostomy (Coch) or RW, were not taken into account as a
confounding factor.

Frontiers in Surgery | www.frontiersin.org 4 March 2022 | Volume 9 | Article 823219

https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles


Van de Heyning et al. SR RACIS Electrode Selection

Selection Bias
Selection bias mainly concerns how the patients were selected in
the identified studies. Case series were graded with a high risk of
bias whereas patients selected for a specific electrode type within a
certain time period were thought to have a low risk of bias. Three
out of 25 studies (studies 19, 43, 45) and 1 out of 18 studies (study
77) within ETFO and EM issues, respectively, were graded as
having a high risk of bias. Seven out of 39 studies within the ESD
issue were assigned a moderate risk of bias (studies 54, 57, 65-).

Missing Data Bias
Missing data bias becomes a concern if the type of electrode
used is not specified for cases with electrode complications. Three
studies within ETFO (Appendix 1: studies 7, 17, and 24), two
studies within ESD (Appendix 2: studies 3 and 35), and 6 studies
within EM issues (Appendix 3: studies 8, 11, 13–15, and 18) did
not provide clear information on the electrode type and hence
were considered to have a moderate risk of bias.

Study Results
Electrode Tip Fold Over
Table 2 lists the 25 articles that reported on ETFO include the
number of cases implanted and the type of electrode. Intra-
operative or post-operative imaging was used in the identification
of ETFO. A total of 5,042 ears were reported and after excluding
the studies that did not specify the electrode type, 2,335 ears were
taken for the evaluation. These 25 articles covered a total of 1,559
implantations with pre-shaped electrodes and 776 with straight
electrodes. Eighty-four out of 1,559 ears implanted with a pre-
shaped electrode, irrespective of CI brand, were associated with
ETFO, an incidence rate (±95% CI) of 5.38% (4.4–6.6%). For the
straight electrodes, irrespective of the CI brand, a rate (±95%
CI) of only 0.51% (0.1–1.3%) was identified. The difference in
rate between the pre-shaped and the straight electrode is highly
significant (p < 0.001).

Electrode Scalar Deviation
Table 3 lists the 39 articles which reported ESD along with
the number of ears implanted and the type of electrode.
Different modalities, such as electrocochleography (EcochG),
intra-operative fluoroscopy or CT, and post-operative CT
imaging, were used to detect the ESD. A total of 3,073 ears
(1,983 pre-shaped and 1,090 straight electrodes) were included
for further analysis after excluding studies that did not specify
the electrode type. Out of 1,983 ears implanted with pre-shaped
electrodes, irrespective of manufacturer, ESD was reported in
567 ears yielding a rate (±95% CI) of 28.6% (26.6–30.6%). Out
of 1,090 ears implanted with straight electrodes, irrespective of
manufacturer, ESD was reported in 120 ears yielding a rate
(±95% CI) of 11% (9.2–13.0%). The difference in rate between
the pre-shaped and the straight electrode is highly significant (p
< 0.001).

Electrode Migration
Table 4 lists the 18 articles which reported on EM. Post-operative
imaging was used in the identification of EM. A total of 5,795
ears implanted with CI were identified from the literature search.

After excluding those studies that did not specify the electrode
type, a total of 3,195 ears were taken for analysis. Pre-shaped
electrodes were implanted in 1,327 ears and straight electrodes
were implanted in 1,868 ears. EM was identified in 61 ears
implanted with straight electrodes, an incidence rate (±95% CI)
of 3.2% (2.5–3.95%). For pre-shaped electrodes, only 7 ears were
identified with EM, a rate (±95% CI) of around 0.53% (0.2–
1.1%). The difference in proportion between the pre-shaped and
the straight, electrode is highly significant (p < 0.001).

DISCUSSION

Summary of Evidence
The aim of this literature review was to determine the type of
electrode best suited to minimize deleterious complications for
use in RACIS and in conventional CI surgery. This systematic
literature review yielded a total of 82 studies covering a total of
8,603 CI procedures, whichmet within the inclusion criteria. This
review specifically sought to establish the incidence of ETFO,
ESD, and EM for both pre-shaped and straight electrodes. A total
of 4,869 ears implanted with pre-shaped and 3,734 ears implanted
with straight electrodes were identified from the search. The high
number of CI procedures (8,603) in total allowed us to compare
the rate of electrode insertion complications between the two
electrode types, which are of value for RACIS and conventional
CI surgery.

Electrode Tip Fold Over
An ETFO occurs when the tip of the electrode gets stuck in the
ST and, on further insertion, the tip bends back on itself as shown
in Figures 3A,B. This could provoke short circuiting between
the apical electrode contacts and can result in pitch confusion
and perversion. Moreover, it may damage the basilar membrane
leading afterward to fibrosis, hydrops, and ossification (93).

Electrode tip fold over is associated in most cases with varying
degrees of decreased speech understanding and, in several series,
co-stimulation of the facial nerve and dizziness was reported. The
speech understanding may be as low as 20% with a Bamford-
Kowal-Bench (BKB) speech test in quiet (38) or with hearing
in noise test (HINT) (19) up to a reported case with preserved
residual hearing and one with 80% speech in Quite (45). Revision
operations or deselecting the involved electrodes increased in
most cases the speech and solved the complaints of facial co-
stimulation and dizziness (19, 41, 45). Intra-operative imaging
is one possible means of detecting the ETFO during surgery in
which case it can be corrected as part of the initial surgery, as it
has been suggested by several clinicians (19, 28, 43).

This literature review demonstrates that ETFO is more
commonly associated with pre-shaped electrodes (rate of 5.3%)
than with straight electrodes (0.5%). Based on reasons cited in the
literature, the higher prevalence in pre-shaped electrodes could
be due to any of the following factors: the pre-mature pulling
of the stylet/polymer sheath, the orientation of the electrode
contacts away from themodiolar wall during insertion, variations
in the size and shape of the cochlea, and variations in the length of
the straight portion of the basal turn. The shape of the electrode
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TABLE 2 | Twenty-five articles reporting on electrode tip fold-over.

Study/type No. of cases taken for

analysis/method

No. of electrode per type/brand No. of cases reported tip fold-over

A B C Pre-shaped Straight

Högerle et al. (25)/R 378 (Post-op x-ray) – – FL (378) – 0

Klabbers et al. (26)/P 25 (Intra-operative fluoroscopy) SM (25) – – 3 –

Müller et al. (27)/R 108 (Spread of

excitation/Intra-operative

fluoroscopy)

SM (7), CA (87), SS (14) – – CA (2), SM (2), SS (1)

Durakovic et al. (28)/R 326 (Intra-operative x-rays) SM (326) – – 23 –

Shaul et al. (29)/P 120 (Intra-operative x-ray) SM (120) – – 8 –

Dimak et al. (30)/R 84 (Post-op x-ray) SM (94) – – 3 –

Labadie et al. (31)/R 175 (Intra-operative imaging) No info on brand segments: Straight electrodes (86);

Pre-curved electrodes (89)

4 (SM) (not included in the analysis)

Heutink et al. (32)/P 23 (Intra-operative fluoroscopy) SM (23) – – 1 –

Garaycochea et al. (33)/R 19 (Intra-operative fluoroscopy) SM (19) – – 3 –

Mittmann et al. (34)/R 85 (Flat-panel CT) SM (85) – – 4 -

Iso-Mustajärvi et al. (35)/R 18 (Cone beam CT) SM (18) – – 0 -

McJunkin et al. (36)/R 117 (Intra-op x-ray) SM – – 9 –

Friedmann et al. (37)/R 237 (Intra-op x-ray) SM (237) – – 11 –

Serrano et al. (38)/R 40 (Intra/Post-op x-ray) SM (40) – – 2 –

Timm et al. (39)/R 275 (Post-op CT) – – 275 (F28, F24,

F20, F16)

– 0

Sipari et al. (40)/R 23 (Post-op CBCT) – MS (23) – 2 –

Gabrielpillai et al. (41)/R 1,722 (Post-op x-ray) No info on brand segments CA (7), SM (6), SS (2)

(not included in the analysis)

Jia et al. (42)/R 65 (Intra-op CBCT) (Contains 3

electrodes from Oticon)

CA (12), SM (1), SS (31) 1J (2), MS (3) F28 (13) SM (1) –

Sabban et al. (19)/R 2 (x-ray & CT) – MS – 2 –

Garaycochea et al. (43)/R 1 (Intra-op fluoroscopy) SM – – 1 (100%) –

Aschendorff et al. (44)/R 45 (Post-op CBCT) SM – – 2 cases. 1st case

corrected in the

same surgery. 2nd

case underwent

revision surgery

–

Zuniga et al. (45)/R 303 (Post-op CT) CA, SS MS, 1J – CA (3), [MS (1), SS (1) and 1J (1)]

No info on brand segments (not included in the analysis)

Fischer et al. (46)/R 63 (Post-op CBCT) – – F24, F28, Std – 1

Dirr et al. (47)/R 215 (Post-op x-ray) CA, SS – Std, M, S, FL,

F28

FL (2)

No info on brand segments (not included in the analysis)

Cosetti et al. (48)/R 277 (Intra-op x-ray) CA – – 5 –

Total 5,042 110 (102 pre-shaped electrodes + 8

straight electrodes)

Total, after excluding four

studies that did not specify

number per electrode type

2,335 Pre-shaped (1,559),

Straight (776)

Pre-shaped (84),

Straight (4)

R, retrospective; P, prospective; SM, Slim-Modiolar; CA, contour advance; MS, mid-scala; SS, slim straight; Std, standard; M, medium; S, compressed; FL, FLEX SOFT, F28: FLEX28;

F24, FLEX24; F20: FLEX20; F16: FLEX16; CBCT, cone-beam CT. Studies that are shaded in gray were not included in the analysis due to the non-availability of information on the

CI brand.

tip (conical/pointed geometry) is another design-related factor
that could influence the incidence of ETFO issues (25, 94, 95).

Once the electrode is inserted inside the ST, it follows its own
path, and currently, there are no steerable electrodes available.
Experimental work on cadaveric temporal bones demonstrated

that robotic insertion could reduce intracochlear trauma by
applying a constant insertion speed in an optimized axis (96).
Hence, it is to be expected that the application of RACIS would
lead to less traumatic insertions. However, there is no evidence
yet that better control of insertion speed, as offered by some
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TABLE 3 | Thirty-eight studies reported on electrode scalar deviation.

Study/type No. of

analyzed

cases

Analyzing method No. of electrode from type/brand No. of cases reported with

scalar deviation

A B C Pre-shaped Straight

Riemann et al. (49)/P 20 3T MRI – MS (5), SJ (5) F28 (10) 1 0

Liebcher et al. (50)/R 255 Post-op CT CA (99), SM (156) – – 32 (CA), 8 (SM) —

Heutink et al. (51)/R 129 Post-op CT CA (85), SS (44) – – 20 (CA) SS (18)

Ketterer et al. (52)/R 201 Post-op CBCT – – F24 (28), F26 (15), F28

(139), FL (19)

– F24 (1), F28

(6), FL (5)

Lenarz et al. (53)/R 20 Post-op CBCT – SJ (20) – 0 –

Durakovic et al. (28)/R 76 Post-op CT SM (76) – – 5 –

Morrel et al. (54)/P 177 Post-op CBCT SS (46) 1J/SJ (39) F24 (8), F28 (52), Std (32) – 39

Nassiri et al. (55)/R 24 Intra-op CT SM (24) – – 1 –

Heutink et al. (32)/P 23 Post-op CT SM (23) – – 8 –

Iso-Mustajärvi et al. (35)/R 18 Post-op CBCT SM (18) – – 0 –

Riggs et al. (56)/P 21 Post-op CT/EcochG – MS (21) – 7 –

Chakravorti et al. (57)/R 220 Post-op CT CA (89), SS (20), ST (11) MS (21), 1J (29) F24 (3), F28 (22), M (1),

Std (24)

45 11

Yamamoto et al. (58)/R 58 Intraoperative CT CA/C (30), SS (12) 1 (MS) F24 (3), F28 (12) 16 7

Shaul et al. (59)/P 110 Post-op CBCT CA (92), SM (18) – – 18 –

Sipari et al. (40)/R 23 Post-op CT – MS (23) – 5 –

Koka et al. (60)/P 32 Post-op CT/EcochG – MS (32) – 7 –

Jia et al. (42)/R 65 Intra-op CT CA (12), SM (1), SS (31) 1J (2), MS (3) F28 (16), 1 –

McJunkin et al. (36)/R 23 Post-op CT SM (23) – – 6 –

Ketterer et al. (61)/R 368 Post-op CBCT CA (368) – – 118 –

An et al. (62)/R 26 Post-op CT SS (5) – F28 (21) – F28 (1), SS (1)

Aschendorff et al. (44)/P 45 Post-op CBCT SM (45) – – 0 –

O’Connell et al. (63)/R 48 Post-op CT – – F24, F28, Std (48) - 0

O’Connell et al. (64)/P 18 EcochG/Post-op CT – MS (18) – 6 –

Mittmann et al. (65)/R 50 NRT/Post-op CT SS (50) – – - SS (2)

Lathuilliere et al. (66)/P 24 Post-op CBCT CA (24), – – 3 –

O’Connell et al. (67)/R 56 Post-op CT CA (36), SS (20) – – 19 SS (2)

O’ Connell et al. (68)/R 220 Post-op CT CA (115), SS (19), 1J (21), MS (14) F28 (28), Std (17), F24 (4)

& M (2)

67 F (4)

Wanna et al. (69)/P 45 Post-op CT CA (15) MS (3) 5 1J and SSS (2)

SS, 1J & F collectively (27=9 each)

Nordfalk et al. (70)/R 39 Post-op CT – – F28 (18), FL (17), F24 (4) – F (0)

Mittmann et al. (71)/R 23 NRT/Post-op CT CA (23) – – 6 –

Mittmann et al. (71)/R 85 NRT/Post-op CT CA (85) – – 16 –

Boyer et al. (72)/n/a 61 Post-op CBCT CA (31), – FL, F28, F24, Std (30) 8 F (0), Std (1)

Fischer et al. (46)/R 63 Post-op CBCT – – F28 (40), F24 (2), FL (7),

Std (14)

– F28 (5)

Wanna et al. (73)/P 116 Post-op CT CA (35), MS (34) (47) LW from all 3 CI

brands (15, 15, 17)

29 All LW (5)

Dirr et al. (47)/R 215 Post-op x-ray 107 108 – F (1)

Nordfalk et al. (74)/R 13 Post-op CT CA (7) 1J (3) Std (2), F24 (1) 3 (CA) Std (1), 1J (1)

Aschendorff et al. (75)/R 223 Post-op CT C (21), CA (202) – – 19 (C), 70 (CA) –

Wanna et al. (73)/R 32 Post-op CT 20 10 2 11 F (0)

Lane et al. (76)/R 23 Post-op CT C/CA (13) H (1) – 6 (C) LW (7)

LW electrodes from brand A (5) & B (4)

Total (excluding Dirr et. al) 3,073 2,073 333 667 567 120

Pre-shaped (1,983)

Straight (1,090)

Pre-shaped (567)

Straight (120)

R, retrospective; P, progressive; n/a, non-availability of data; SM, Slim-Modiolar; CA, contour advance; MS, mid-scala; SS, slim straight; SJ, Slim J; Std, standard; M, medium; S,

compressed; FL, FLEX SOFT, F28: FLEX28; F24, FLEX24; F20: FLEX20; F16: FLEX16; NRT, neural response telemetry; EcochG, electrocochleography. A study that is shaded in gray

was not included in the analysis due to the non-availability of information on the CI brand.
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TABLE 4 | Eighteen studies reported on electrode migration.

Study/type No. of

analyzed

cases

Analyzing method No. of electrode from type No. of cases reported with electrode

migration

Pre-shape Straight Pre-shaped Straight

Ozer et al. (77)/R 149 Post-op CT – 149 – 1

Chan et al. (78)/R 1 Post-op x-ray and CT – 1 – 1

Mitzlaff et al. (79)/R 560 Post-op CT 414 146 – 6

Leinung et al. (80)/R 1,603 Post-op x-ray and CT 772 831 – 17

Rajan et al. (81)/R 56 Not mentioned – 56 – 1

Celik et al. (82)/R 245 Post-op x-ray Not specified Not specified – 1

Rader et al. (83)/R 270 Post-op CBCT – 270 – 10

Patnaik et al. (84)/R 534 Post-op HRCT Not specified Not specified – 2

Mittmann et al. (71)/R 54 Post-op CT 54 – 7 –

Dietz et al. (21)/R 201 Post-op CBCT 64 137 – 12

Jeppesen et al. (85)/R 308 Post-op CT Not specified Not specified – 4

van der Marel et al. (86)/R 35 Post-op CT – 35 – 10

Lavinsky-Wolff et al. (87)/R 75 Post-op X-ray Not specified Not specified – 2

Brown et al. (88)/R 806 Post-op CT Not specified Not specified – 4

Connell et al. (89)/R 580 Post-op CT Not specified Not specified – 2

Green et al. (90)/R 239 Post-op imaging 23 216 – 3

Roland Jr et al. (91)/P 27 Post-op x-ray – 27 – 0

de Long et al. (92)/R 52 Post-op imaging Not specified Not specified – 0

Total 5,795 7 83

Excluding studies that did

not specify the electrode

type

3,195 1,327 1,868 7 61

R, Retrospective; P, Progressive; CBCT, Cone-Beam Computerized Tomography.

FIGURE 3 | Cartoon picture demonstrating how an electrode tip fold over

would look like (A). Post-operative plain film x-ray showing electrode tip

fold-over in a patient case (B). Reproduced by permission of Wolters Kluwer

Health Inc. (Appendix 1—reference 17).

systems, or an insertion more axial to the basal part of ST, as
offered by other robotic systems would decrease the rate of ETFO
with pre-shaped electrodes. Testing in the future will determine
whether the implementation of haptic pressure feedback might
detect a tip getting stuck.

Electrode Scalar Deviation
Electrode scalar deviation means that the electrode which is
inserted into the ST through an RW or Coch approach perforates
the basilar membrane and a number of apical electrodes end up
in SV. ESD is by far the most frequent serious complication.

FIGURE 4 | Dissected cochlear sample showing the electrode tip of a

pre-shaped electrode penetrating the spiral ligament from the scala tympani

(ST) and translocating to scala vestibuli (SV) (A). Image courtesy of Prof. Peter

Roland from Southwestern University, TX, USA. Post-operative CT image slice

showing part of the electrode in the SV as pointed by the red arrow (B).

Reproduced by permission of Elsevier B.V (Appendix 2—reference 2).

This occurs mainly between 90 and 180◦ of angular insertion
depth, causing a scalar deviation as pointed by a black arrow in
Figure 4A and a red arrow in Figure 4B.

Electrode scalar deviation is associated with fibrous tissue
growth and osteo-neogenesis with the cochlea. Most importantly,
ESD has been associated with irreversible degeneration of
neuronal cells as detected from the histological evaluation
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of cadaveric temporal bones from patients who in life had
undergone CI (97). Breaching the basilarmembrane and allowing
the mixture of perilymph and endolymph can result in the loss of
any residual hearing.

Electrode scalar deviation is associated with poorer hearing
outcomes when compared to patients with no ESD (20, 67,
68). Jwair et al. through a meta-analysis on ESD identified six
studies that compared post-operative speech perception scores
between post-lingually adult CI recipients with and without ESD.
They concluded that ESD was negatively associated with speech
perception scores (weighted mean 41%) compared to full ST
placement (weighted mean 55%) (20). O’ Connell et al. in 2016
reported the rates of 22.4 and 55% ESD with contour advance
(CA, pre-shaped) and mid-scala (MS; pre-shaped) electrodes,
respectively, and the ESD was associated with a 12% decrease in
consonant-nucleus-consonant (CNC) score (67). O’Connell et al.
in 2016 through a literature review covering 6 studies reported
that ST insertions are associated with better speech performance
when compared to patients with SD. They further reported that
the SD affects the low-frequency residual hearing of patients
negatively (68).

Electrode scalar deviation is more frequent with pre-shaped
electrodes (rate of 28.7%) than with straight electrodes (rate of
11%) in this literature review. The reasons for the higher rate
might be explained as follows: (1) due to the variation in cochlear
size, shape, and the length of the straight portion of the cochlear
basal turn, the standard insertion depth to which the straightened
pre-shaped electrode should be inserted inside the cochlea prior
to stylet rod/polymer sheath removal could already be deep
enough to penetrate the spiral ligament. (2) Orientation of the
contact pads of the pre-shaped electrode away from the modiolus
wall and facing the basilar membrane/spiral ligament may cause
the pre-shaped electrode to curl upward (rather than laterally
around the modiolus) when the stylet rod/polymer sheath is
retracted. This would cause the tip to penetrate the osseous spiral
lamina or basilar membrane. In contrast, the straight electrode
has the flexibility to bend in all directions, making it far less
traumatic even if the electrode contacts are oriented away from
the modiolar wall (94).

The different sites and techniques of entering the ST, e.g.,
Coch, RW, or extended RW (ERW), approach may also have
an influence on ESD. Mainly CI studies in case of residual
hearing addressed this issue. Although the approach could not
be analyzed as a confounding factor, it deserves special attention.
The first multicenter studies that reported atraumatic electrode
insertions used a Coch approach (98) and later studies with long-
term follow-up could not demonstrate a difference between RW
and Coch (99).

Studies focusing on ESD have demonstrated that electrode
insertion through RW is associated with a lower incidence of
ESD, compared to a Coch approach (46, 73). A consensus
publication on atraumatic insertion strongly advocated the RW
approach (2). A histopathological study by Ishiyama et al.
analyzed the temporal bones of CI patients who in life underwent
CI surgery with either an RW or a Coch approach revealed that
although insertion through a standard promontory Coch resulted
in hydrops and fibrosis in both the ST and SV in the majority of

FIGURE 5 | The immediate post-operative CT scan shows a fully inserted

Cochlear Slim Straight array (CI422) with an insertion angle of 390◦ (A). The

follow-up scan shows a substantially retracted electrode with six

extra-cochlear electrodes and an insertion angle of 210◦. The arrow points to

the tip of the electrode (21) (B). Reproduced by permission of Springer Nature.

subjects, RW insertions did not (100). Hence, RACIS aims for
minimal traumatic inner ear access at the level of the RW in the
case of normal anatomy (101).

Cadaveric temporal bone experiments show that, in particular,
the occurrence of ESD is decreased in motorized co-axial
insertion with a slow steady speed (102). Yet, even in the
limited series of RACIS, ESD has been reported with pre-shaped
electrodes (17). With straight electrodes, RACIS can better
manage co-axial insertion into the ST, minimizing damage to
the scalar walls. Indeed, studies have shown that the orientation
of insertion with a robotic system reduces both the error and
the variability of the alignment to a defined optimal axis that
it is significantly better compared with a manual insertion,
even with experienced surgeons (102, 103). The detection of
premature electrode contact with the basilar membrane is
expected to improve when intra-operative evoked potentials can
be reliably measured (64, 104, 105) with advanced intra-operative
imaging (106).

Electrode Migration
In the case of EM, the electrode retracts from its original
intracochlear position. This results in the partial displacement
of some electrode contacts outside the cochlea. Although,
it is believed not to occur often in the opinion of several
experienced surgeons, EM is underreported (21). Figure 5A

shows a fully inserted electrode immediately post-op. A follow-
up scan, however, shows that the electrode array has retracted out
of the cochlea (Figure 5B).

Electrode migration can occur during the closing phase
of surgery, immediately post-operatively or later on. EM can
result in increased electrode impedances and deterioration of
speech recognition scores (21). Depending on the number of
extra-cochlear electrodes and the associated impact on hearing,
revision surgery to reinsert the electrode into the cochlea may
be undertaken. The reason for EM with a straight electrode
is believed to be the spring-back force stored in the excess
electrode lead coiled in the mastoid drilled cavity. Even a slight
relaxation in the coiled electrode lead in the mastoid cavity due
to the patient’s activity or natural mastoid growth (107) could
potentially pull the electrode array out of the cochlea. A possible
solution is the electrode lead fixation clip, as shown in Figure 6A,
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FIGURE 6 | Fixation clip holding the electrode lead onto the bony-buttress of

the middle ear space [(A) Image courtesy of Joachim Müller, Munich,

Germany]. Electrode lead pushed into the extended groove between the facial

nerve and chorda tympani [(B) Image courtesy of Timo Stöver, Frankfurt,

Germany]. The electrode lead is fixed in the posterior tympanotomy [(C)-left]

and the excess electrode lead coil within the undercut cortex is covered with

bone dust mixed with fibrin glue [(C)-right- Image courtesy of Paul Van de

Heyning, Antwerp, Belgium].

that could minimize/prevent electrode movement and retraction
(108). Alternatively, a gentle groove between the facial nerve
and chorda tympani (as shown in Figure 6B) into which the
electrode lead is placed has limited themovement of the electrode
lead (109). Fixing the electrode with bone dust mixed with
fibrin glue (as shown in Figure 6C) is advocated by some
surgeons (110).

Electrode migration occurs more commonly with the straight
electrodes (rate of 3.2%) than with pre-shaped electrodes (rate
of 0.53%). EM out of the cochlea is usually not associated with
pre-shaped electrodes because the curved electrode array acts
like a hook around the modiolus which provides 5–10 times the
holding force needed to extract the electrode from the cochlea
compared to straight electrodes (71). Nevertheless, fixating the
electrode is advocated for all types of electrodes and not only to
prevent EMbut also to reduce fatigue electrode wire breakage due
to electrode micromovements.

Robotic systems, such as RobOtol R© and iotaSOFT R©, that
insert the electrode through the classic CI approach with an open
mastoid and posterior tympanotomy have the same options as
that of manual electrode insertion in stabilizing the electrode
regardless of the electrode types. Robotic systems, such as
HEARO R©, Rosa R©, which drill a narrow tunnel (direct cochlear
access) from the cortex to the cochlea, need an alternate solution
for stabilizing the electrode. EM has not been reported in the
limited series of patients operated on who have had robotic
insertions (12–15, 17, 18). Although the narrow tunnel approach

itself provides some stabilization and the absence of coiled excess
electrode lead in the mastoid cavity minimizes the EMs, caution
is needed in fixing the electrode in the tunnel, which might be
accomplished, for example with bone paté.

RACIS and Electrode Type
As the main goal of RACIS is to be less traumatic, this
literature review favors the use of straight electrodes due to
the significantly lower incidence of ETFO and ESD. ESD often
results in irreversible an intra-cochlear injury that permanently
degrades hearing outcomes. ETFO and EM, however, are
generally correctable and do not result in permanent cochlear
damage. Therefore, minimizing the risk of scalar translocations
should be a high priority, none-the-less, special care has
to be taken to avoid EM when using straight electrodes.
This is in line with the conclusions of Jwair et al., ‘if one
aims to minimize clinically relevant intracochlear trauma,
lateral wall arrays would be the preferred option for cochlear
implantation’ (20).

It is to be hoped that RACIS could further decrease the
occurrence of these complications when motorized insertion,
with a slow steady speed, is combined with directional control
in all three planes to realize an optimized alignment with the ST.
Robotic systems have proved to be superior in controlling both
speed and directionality. Doudi et al. recently reported from their
clinical study comparing 40 CI patients with manual insertion
with 20 CI patients with robotic insertion showed a less ESD for
robotic insertion of straight electrode arrays when compared with
manual insertion (111).

A study by Barriat et al. in 2021 reported complete hearing
preservation with a mean loss of pure tone average for five
frequencies of 13.60 ± 7.70 dB, and this was associated with a
lower insertion speed of 0.88 ± 0.12 mm/s applied by RobOtol R©

(10). One must realize, however, that the anatomical course of
the facial nerve prohibits a perfect co-axial approach to the ST.
Animal studies have demonstrated that flexible electrodes are
associated with less ESD, thereby, minimizing the hearing loss
and intra-cochlear fibrosis (112).

These conclusions are based on a large number of cases
taken for analysis from 82 studies. Due to the heterogeneous
design of all these studies, a meta-analysis with a forest plot
could not be made. This literature review focused on three
deleterious complications affecting the hearing outcomes linked
with the use of two types of electrodes. There are many factors
that have an impact on the electrode choice in RACIS, such
as electrode length, electrode stiffness (113), and electrode
insertion path that includes both a direct tunnel approach
and through posterior tympanotomy. While the electrode
insertion through a posterior tympanotomy approach can handle
any type of electrode, the direct tunnel approach can only
handle straight electrodes. Electrode selection matching the
cochlear anatomy, the cochlear duct length, and spiral ganglion
cell body distribution (114–117) will prove beneficial when
combined with a robotic-assisted electrode insertion and pre-
planned computational insertion angles and electrode lengths of
16–34 mm.
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Strengths and Limitations
This Systematic Review (SR) provides a systematic evaluation
that includes the risk of bias assessment of published evidence on
the topic of ETFO, ESD, and EM that are associated with manual
insertion of electrodes. The possibility of reducing electrode
insertion complications through electrode design is of high
relevance to healthcare providers and patients. The electrode
insertion complications as reported in the identified articles were
confirmed by visually looking at either intra-operative or post-
operative images that decrease the overall bias with measurement
of outcomes. We did this systematic review strictly following
the PRISMA guidelines of reporting. Limitations include the
bias in the studies identified mainly due to the risk of selection
and confounding bias. Most of the studies identified were
retrospective in nature.

CONCLUSIONS

The design of the electrode influences the incidence of
electrode insertion complications. The literature findings of the
current study reveal that there is a higher incidence of ETFO
and ESD associated with pre-shaped electrodes compared to
straight electrodes. EM, on the other hand, occurs more often
with straight lateral wall electrodes. Ex vivo experiments and
clinical studies indicate that the application of robotic systems
could optimize the electrode insertion characteristics thereby
reducing the insertion-related issues. Robotic-assisted electrode
insertion and manual insertion should be complemented with
the straight electrode design that is associated with the least
positioning complications.
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