10 research outputs found

    Analysis of LIN28A in early human ovary development and as a candidate gene for primary ovarian insufficiency

    Get PDF
    Lin28 proteins are emerging as important regulators of microRNAs in endocrine systems. Lin28a regulates primordial germ cell development and puberty timing in mice, whereas the related protein LIN28B is associated with age at menarche in genome-wide association studies in humans. Here, we studied expression of LIN28A and LIN28B in early human gonad development. LIN28A increased in the developing ovary between 6 and 9 weeks post conception, but not in the developing testis. Immunohistochemistry demonstrated LIN28A in peripheral germ cells. LIN28B was expressed at lower levels in both tissues and did not increase with time. As disruption of Lin28a affects germ cell development in mice, LIN28A was considered a candidate gene for primary ovarian insufficiency (POI) in humans. However, no significant changes were found in 50 women studied. These findings show LIN28A is strongly expressed in germ cells during early human ovary development, but disruption of LIN28A is not a common cause of POI

    Cell death and clearance in young animals

    Get PDF
    This thesis explores the recognition, engulfment, and degradation of cells dying by programmed cell death (PCD), by phagocytes. PCD is an important process in animal development where cells actively participate in their own demise. The thesis begins with a light and electron microscope survey of the phagocytes in the neonatal rodent optic nerve and cerebellum and shows that different combinations of cells phagocytose the dead cells in different locations; microglia in the optic nerve, Bergmann glia and neuroblasts in the cerebellar external granular layer (EGL), and microglia and astrocytes in the cerebellar white matter. The events of recognition, engulfment, and degradation are then examined in detail using a time-lapse system to observe different phagocytic cell types engulfmg pyknotic cells. Microglia, the professional phagocytes of the central nervous system (CNS), engulf pyknotic cells on first contact, whereas other, nonprofessional phagocytes (BHKs, lens epithelial cells, and astrocytes), recognise dead cells and throw membrane ruffles around them, but only ingest them after a period of time has elapsed. Moreover, microglia digest pyknoses more rapidly than non-professionals. These results were corroborated with in vivo electron microscope data showing that pyknoses in the optic nerve are always completely engulfed by microglia and are digested more rapidly than pyknoses in the cerebellar EGL, which are palpated by neighbouring neuroblasts before their ingestion, and subsequently digested more slowly. Irradiation of the neonatal cerebellum selectively causes PCD of large numbers of neuroblasts. Most of the pyknoses are engulfed by Bergmann glia, revealing the unexpectedly large phagocytic capacity of these cells. Moreover, the irradiation causes microglia, which are normally absent from the EGL, to be transiently recruited into it, suggesting a chemotactical response to dying cells

    A genomic atlas of human adrenal and gonad development

    Get PDF
    In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc), such as testis determination, the onset of steroidogenesis and primordial germ cell development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical stages of human embryonic and fetal development.RNA was extracted from 53 tissue samples between 6-10 wpc (adrenal, testis, ovary and control). Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A mathematical model was constructed to investigate time-series changes across the dataset. Pathway analysis was performed using ClueGo and cellular localisation of novel factors confirmed using immunohistochemistry.Using this approach, we have identified novel components of adrenal development (e.g. ASB4, NPR3) and confirmed the role of SRY as the main human testis-determining gene. By mathematical modelling time-series data we have found new genes up-regulated with SOX9 in the testis (e.g. CITED1), which may represent components of the testis development pathway. We have shown that testicular steroidogenesis has a distinct onset at around 8 wpc and identified potential novel components in adrenal and testicular steroidogenesis (e.g. MGARP, FOXO4, MAP3K15, GRAMD1B, RMND2), as well as testis biomarkers (e.g. SCUBE1). We have also shown that the developing human ovary expresses distinct subsets of genes (e.g. OR10G9, OR4D5), but enrichment for established biological pathways is limited.This genomic atlas is revealing important novel aspects of human development and new candidate genes for adrenal and reproductive disorders

    A genomic atlas of human adrenal and gonad development

    No full text
    Background: In humans, the adrenal glands and gonads undergo distinct biological events between 6-10 weeks post conception (wpc), such as testis determination, the onset of steroidogenesis and primordial germ cell development. However, relatively little is currently known about the genetic mechanisms underlying these processes. We therefore aimed to generate a detailed genomic atlas of adrenal and gonad development across these critical stages of human embryonic and fetal development. Methods: RNA was extracted from 53 tissue samples between 6-10 wpc (adrenal, testis, ovary and control). Affymetrix array analysis was performed and differential gene expression was analysed using Bioconductor. A mathematical model was constructed to investigate time-series changes across the dataset. Pathway analysis was performed using ClueGo and cellular localisation of novel factors confirmed using immunohistochemistry. Results: Using this approach, we have identified novel components of adrenal development (e.g. ASB4, NPR3) and confirmed the role of SRY as the main human testis-determining gene. By mathematical modelling time-series data we have found new genes up-regulated with SOX9 in the testis (e.g. CITED1), which may represent components of the testis development pathway. We have shown that testicular steroidogenesis has a distinct onset at around 8 wpc and identified potential novel components in adrenal and testicular steroidogenesis (e.g. MGARP, FOXO4, MAP3K15, GRAMD1B, RMND2), as well as testis biomarkers (e.g. SCUBE1). We have also shown that the developing human ovary expresses distinct subsets of genes (e.g. OR10G9, OR4D5), but enrichment for established biological pathways is limited. Conclusion: This genomic atlas is revealing important novel aspects of human development and new candidate genes for adrenal and reproductive disorders

    Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome

    No full text
    IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital anomalies) is an undergrowth developmental disorder with life-threatening consequences. An identity-by-descent analysis in a family with IMAGe syndrome identified a 17.2-Mb locus on chromosome 11p15 that segregated in the affected family members. Targeted exon array capture of the disease locus, followed by high-throughput genomic sequencing and validation by dideoxy sequencing, identified missense mutations in the imprinted gene CDKN1C (also known as P57KIP2) in two familial and four unrelated patients. A familial analysis showed an imprinted mode of inheritance in which only maternal transmission of the mutation resulted in IMAGe syndrome. CDKN1C inhibits cell-cycle progression, and we found that targeted expression of IMAGe-associated CDKN1C mutations in Drosophila caused severe eye growth defects compared to wild-type CDKN1C, suggesting a gain-of-function mechanism. All IMAGe-associated mutations clustered in the PCNA-binding domain of CDKN1C and resulted in loss of PCNA binding, distinguishing them from the mutations of CDKN1C that cause Beckwith-Wiedemann syndrome, an overgrowth syndrome
    corecore