944 research outputs found

    Vertical Tracer Mixing in Hot Jupiter Atmospheres

    Full text link
    Aerosols appear to be ubiquitous in close-in gas giant atmospheres, and disequilibrium chemistry likely impacts the emergent spectra of these planets. Lofted aerosols and disequilibrium chemistry are caused by vigorous vertical transport in these heavily irradiated atmospheres. Here we numerically and analytically investigate how vertical transport should change over the parameter space of spin-synchronized gas giants. In order to understand how tracer transport depends on planetary parameters, we develop an analytic theory to predict vertical velocities and mixing rates (KzzK_\mathrm{zz}) and compare the results to our numerical experiments. We find that both our theory and numerical simulations predict that, if the vertical mixing rate is described by an eddy diffusivity, then this eddy diffusivity KzzK_\mathrm{zz} should increase with increasing equilibrium temperature, decreasing frictional drag strength, and increasing chemical loss timescales. We find that the transition in our numerical simulations between circulation dominated by a superrotating jet and that with solely day-to-night flow causes a marked change in the vertical velocity structure and tracer distribution. The mixing ratio of passive tracers is greatest for intermediate drag strengths that corresponds to this transition between a superrotating jet with columnar vertical velocity structure and day-to-night flow with upwelling on the dayside and downwelling on the nightside. Lastly, we present analytic solutions for KzzK_\mathrm{zz} as a function of planetary effective temperature, chemical loss timescales, and other parameters, for use as input to one-dimensional chemistry models of spin-synchronized gas giant atmospheres.Comment: 25 pages, 12 figures, Accepted at Ap

    Photon-assisted shot noise in graphene in the Terahertz range

    Full text link
    When subjected to electromagnetic radiation, the fluctuation of the electronic current across a quantum conductor increases. This additional noise, called photon-assisted shot noise, arises from the generation and subsequent partition of electron-hole pairs in the conductor. The physics of photon-assisted shot noise has been thoroughly investigated at microwave frequencies up to 20 GHz, and its robustness suggests that it could be extended to the Terahertz (THz) range. Here, we present measurements of the quantum shot noise generated in a graphene nanoribbon subjected to a THz radiation. Our results show signatures of photon-assisted shot noise, further demonstrating that hallmark time-dependant quantum transport phenomena can be transposed to the THz range.Comment: includes supplemental materia

    Coupling of Josephson flux-flow oscillators to an external RC load

    Full text link
    We investigate by numerical simulations the behavior of the power dissipated in a resistive load capacitively coupled to a Josephson flux flow oscillator and compare the results to those obtained for a d.c. coupled purely resistive load. Assuming realistic values for the parameters R and C, both in the high- and in the low-Tc case the power is large enough to allow the operation of such a device in applications.Comment: uuencoded, gzipped tar archive containing 11 pages of REVTeX text + 4 PostScript figures. To appear in Supercond. Sci. Techno

    Kink Chains from Instantons on a Torus

    Get PDF
    We describe how the procedure of calculating approximate solitons from instanton holonomies may be extended to the case of soliton crystals. It is shown how sine-Gordon kink chains may be obtained from CP1 instantons on a torus. These kink chains turn out to be remarkably accurate approximations to the true solutions. Some remarks on the relevance of this work to Skyrme crystals are also made.Comment: latex 17 pages, DAMTP 94-7

    Ontogenic and ecological control of metamorphosis onset in a carapid fish, <i>Carapus homei</i>: experimental evidence from vertebra and otolith comparisons

    Get PDF
    In Carapus homei, reef colonisation is associated with a penetration inside a sea cucumber followed by heavy transformations during which the length of the fish is reduced by 60%. By comparing vertebral axis to otolith ontogenetic changes, this study aimed (i) to specify the events linked to metamorphosis, and (ii) to establish to what extent these fish have the ability to delay it. Different larvae of C. homei were caught when settling on the reef and kept in different experimental conditions for at least 7 days and up to 21 days: darkness or natural light conditions, presence of sea cucumber or not, and food deprivation or not. Whatever the nutritional condition, a period of darkness seems sufficient to initiate metamorphosis. Twenty-one days in natural light conditions delayed metamorphosis, whereas the whole metamorphosis process is the fastest (15 days) for larvae living in sea cucumbers. Whether the metamorphosis was initiated or not, otoliths were modified with the formation of a transition zone, whose structure varied depending on the experimental conditions. At day 21, larvae maintained in darkness had an otolith transition zone with more increments (around 80), albeit wider than those (more or less 21) of individuals kept under natural lighting. These differences in otolith growth could indicate an increased incorporation rate of released metabolites by metamorphosing larvae. However, the presence of a transition zone in delayed-metamorphosis larvae suggests that these otolith changes record the endogenously-induced onset of metamorphosis, whereas body transformations seem to be modulated by the environmental conditions of settlement

    Electron quantum optics : partitioning electrons one by one

    Full text link
    We have realized a quantum optics like Hanbury Brown and Twiss (HBT) experiment by partitioning, on an electronic beam-splitter, single elementary electronic excitations produced one by one by an on-demand emitter. We show that the measurement of the output currents correlations in the HBT geometry provides a direct counting, at the single charge level, of the elementary excitations (electron/hole pairs) generated by the emitter at each cycle. We observe the antibunching of low energy excitations emitted by the source with thermal excitations of the Fermi sea already present in the input leads of the splitter, which suppresses their contribution to the partition noise. This effect is used to probe the energy distribution of the emitted wave-packets.Comment: 5 pages, 4 figure

    Shot noise generated by graphene p–n junctions in the quantum Hall effect regime

    Get PDF
    International audienceGraphene offers a unique system to investigate transport of Dirac Fermions at p–n junctions. In a magnetic field, combination of quantum Hall physics and the characteristic transport across p–n junctions leads to a fractionally quantized conductance associated with the mixing of electron-like and hole-like modes and their subsequent partitioning. The mixing and partitioning suggest that a p–n junction could be used as an electronic beam splitter. Here we report the shot noise study of the mode-mixing process and demonstrate the crucial role of the p–n junction length. For short p–n junctions, the amplitude of the noise is consistent with an electronic beam-splitter behaviour, whereas, for longer p–n junctions, it is reduced by the energy relaxation. Remarkably, the relaxation length is much larger than typical size of mesoscopic devices, encouraging using graphene for electron quantum optics and quantum information processing

    Feasibility of cheese production and whey valorization in the Adamawa Province of Cameroon

    Get PDF
    Problems associated with perishability and distribution of local milk and milk products by small-scale producers in the Adamawa province of Cameroon, justified development of an easy process for producing pressed-dough cheese and flavoured whey. Production from raw milk was technically profitable with mean cheese and flavoured whey yields of 8.9 and 85,6% (w/w), respectively. The cheese and whey comprise 50 and 45.7 % (w/w), respectively, of the milk initial dry matter and were highly appreciated by about 90% of panellists. The profitability of a small-scale production unit was established based on 562 kg of treated milk per month. An initial investment of about US 6,205generatesamonthly profitmarginofUS6,205 generates a monthly profit margin of US 237, which gives a profit of 45.8%.Key words: Adamawa, milk, cheese, whey, feasibility, profitability

    Nonlinear ac conductivity of one-dimensional Mott insulators

    Full text link
    We discuss a semiclassical calculation of low energy charge transport in one-dimensional (1d) insulators with a focus on Mott insulators, whose charge degrees of freedom are gapped due to the combination of short range interactions and a periodic lattice potential. Combining RG and instanton methods, we calculate the nonlinear ac conductivity and interpret the result in terms of multi-photon absorption. We compare the result of the semiclassical calculation for interacting systems to a perturbative, fully quantum mechanical calculation of multi-photon absorption in a 1d band insulator and find good agreement when the number of simultaneously absorbed photons is large.Comment: Dedicated to Thomas Nattermann on the occasion of his 60th birthday. To appear in JSTAT. 5 pages, 2 figure

    Switching between dynamic states in intermediate-length Josephson junctions

    Get PDF
    The appearance of zero-field steps (ZFS’s) in the current-voltage characteristics of intermediate-length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation (PSGE) is associated with the growth of parametrically excited instabilities of the McCumber background curve (MCB). A linear stability analysis of a McCumber solution of the PSGE in the asymptotic linear region of the MCB and in the absence of magnetic field yields a Hill’s equation which predicts how the number, locations, and widths of the instability regions depend on the junction parameters. A numerical integration of the PSGE in terms of truncated series of time-dependent Fourier spatial modes verifies that the parametrically excited instabilities of the MCB evolve into the fluxon oscillations characteristic of the ZFS’s. An approximate analysis of the Fourier mode equations in the presence of a small magnetic field yields a field-dependent Hill’s equation which predicts that the major effect of such a field is to reduce the widths of the instability regions. Experimental measurements on Nb-NbxOy-Pb junctions of intermediate length, performed at different operating temperatures in order to vary the junction parameters and for various magnetic field values, verify the physical existence of switching from the MCB to the ZFS’s. Good qualitative, and in many cases quantitative, agreement between analytic, numerical, and experimental results is obtained
    • …
    corecore