19 research outputs found

    DNA Methylation: A Timeline of Methods and Applications

    Get PDF
    DNA methylation is a biochemical process where a DNA base, usually cytosine, is enzymatically methylated at the 5-carbon position. An epigenetic modification associated with gene regulation, DNA methylation is of paramount importance to biological health and disease. Recently, the quest to unravel the Human Epigenome commenced, calling for a modernization of previous DNA methylation profiling techniques. Here, we describe the major developments in the methodologies used over the past three decades to examine the elusive epigenome (or methylome). The earliest techniques were based on the separation of methylated and unmethylated cytosines via chromatography. The following years would see molecular techniques being employed to indirectly examine DNA methylation levels at both a genome-wide and locus-specific context, notably immunoprecipitation via anti-5′methylcytosine and selective digestion with methylation-sensitive restriction endonucleases. With the advent of sodium bisulfite treatment of DNA, a deamination reaction that converts cytosine to uracil only when unmethylated, the epigenetic modification can now be identified in the same manner as a DNA base-pair change. More recently, these three techniques have been applied to more technically advanced systems such as DNA microarrays and next-generation sequencing platforms, bringing us closer to unveiling a complete human epigenetic profile

    Replication and exploratory analysis of 24 candidate risk polymorphisms for neural tube defects.

    Get PDF
    BackgroundNeural tube defects (NTDs), which are among the most common congenital malformations, are influenced by environmental and genetic factors. Low maternal folate is the strongest known contributing factor, making variants in genes in the folate metabolic pathway attractive candidates for NTD risk. Multiple studies have identified nominally significant allelic associations with NTDs. We tested whether associations detected in a large Irish cohort could be replicated in an independent population.MethodsReplication tests of 24 nominally significant NTD associations were performed in racially/ethnically matched populations. Family-based tests of fifteen nominally significant single nucleotide polymorphisms (SNPs) were repeated in a cohort of NTD trios (530 cases and their parents) from the United Kingdom, and case-control tests of nine nominally significant SNPs were repeated in a cohort (190 cases, 941 controls) from New York State (NYS). Secondary hypotheses involved evaluating the latter set of nine SNPs for NTD association using alternate case-control models and NTD groupings in white, African American and Hispanic cohorts from NYS.ResultsOf the 24 SNPs tested for replication, ADA rs452159 and MTR rs10925260 were significantly associated with isolated NTDs. Of the secondary tests performed, ARID1A rs11247593 was associated with NTDs in whites, and ALDH1A2 rs7169289 was associated with isolated NTDs in African Americans.ConclusionsWe report a number of associations between SNP genotypes and neural tube defects. These associations were nominally significant before correction for multiple hypothesis testing. These corrections are highly conservative for association studies of untested hypotheses, and may be too conservative for replication studies. We therefore believe the true effect of these four nominally significant SNPs on NTD risk will be more definitively determined by further study in other populations, and eventual meta-analysis

    The application of CRISPR-Cas for single species identification from environmental DNA

    Get PDF
    We report the first application of CRISPR‐Cas technology to single species detection from environmental DNA (eDNA). Organisms shed and excrete DNA into their environment such as in skin cells and faeces, referred to as environmental DNA (eDNA). Utilising eDNA allows non‐invasive monitoring with increased specificity and sensitivity. Current methods primarily employ PCR‐based techniques to detect a given species from eDNA samples, posing a logistical challenge for on‐site monitoring and potential adaptation to biosensor devices. We have developed an alternative method; coupling isothermal amplification to a CRISPR‐Cas12a detection system. This utilises the collateral cleavage activity of Cas12a, a ribonuclease guided by a highly specific single CRISPR RNA. We used the target species Salmo salar as a proof‐of‐concept test of the specificity of the assay among closely related species and to show the assay is successful at a single temperature of 37°C with signal detection at 535 nM. The specific assay, detects at attomolar sensitivity with rapid detection rates (<2.5 h). This approach simplifies the challenge of building a biosensor device for rapid target species detection in the field and can be easily adapted to detect any species from eDNA samples from a variety of sources enhancing the capabilities of eDNA as a tool for monitoring biodiversity

    Comparing CRISPR-Cas and qPCR eDNA assays for the detection of Atlantic salmon (Salmo salar L.)

    Get PDF
    Molecular techniques offer sensitive, specific, noninvasive monitoring of target species from a variety of environmental samples. We recently developed a CRISPR‐Cas‐based eDNA assay for rapid single‐species detection as a route to a simple, cost‐effective biosensor device. CRISPR‐Cas‐based diagnostic assays use isothermal conditions in combination with a highly specific sequence recognition system. This CRISPR‐Cas assay was designed to target Salmo salar, and we previously demonstrated its utility in eDNA samples from sites in Ireland. The aim of this study was to validate our assay in two larger sample sets from Canada (n = 16/n = 63) in comparison with an independent S. salar qPCR assay. We demonstrate that overall, the CRISPR‐Cas assay performs similarly to qPCR for assessing the presence or absence of S. salar from eDNA and provides a viable alternative approach where qPCR assay design and application have proven to be challenging

    Monitoring of emerging contaminants of concern in the aquatic environment: a review of studies showing the application of effect-based measures

    No full text
    Water scarcity is increasingly a global cause of concern mainly due to widespread changes in climate conditions and increased consumptive water use driven by the exponential increase in population growth. In addition, increased pollution of fresh water sources due to rising production and consumption of pharmaceuticals and organic chemicals will further exacerbate this concern. Although surface water contamination by individual chemicals is often at very low concentration, pharmaceuticals for instance are designed to be efficacious at low concentrations, creating genuine concern for their presence in freshwater sources. Furthermore, the additive impact of multiple compounds may result in toxic or other biological effects that otherwise will not be induced by individual chemicals. Globally, different legislative frameworks have led to pre-emptive efforts which aim to ensure good water ecological status. Reports detailing the use and types of effect-based measures covering specific bioassay batteries that can identify specific mode of actions of chemical pollutants in the aquatic ecosystem to evaluate the real threat of pollutants to aquatic lives and ultimately human lives have recently emerged from monitoring networks such as the NORMAN network. In this review, we critically evaluate some studies within the last decade that have implemented effect-based monitoring of pharmaceuticals and organic chemicals in aquatic fauna, evaluating the occurrence of different chemical pollutants and the impact of these pollutants on aquatic fauna with special focus on pollutants that are contaminants of emerging concern (CEC) in urban wastewater. A critical discussion on studies that have used effect-based measures to assess biological impact of pharmaceutical/organic compound in the aquatic ecosystem and the endpoints measurements employed is presented. The application of effect-based monitoring of chemicals other than assessment of water quality status is also discussed

    Analysis of the MTHFD1 promoter and risk of neural tube defects

    No full text
    Genetic variants in MTHFD1 (5,10-methylenetetrahydrofolate dehydrogenase/5,10-methenyltetrahydrofolate cyclohydrolase/ 10-formyltetrahydrofolate synthetase), an important folate metabolic enzyme, are associated with a number of common diseases, including neural tube defects (NTDs). This study investigates the promoter of the human MTHFD1 gene in a bid to understand how this gene is controlled and regulated. Following a combination of in silico and molecular approaches, we report that MTHFD1 expression is controlled by a TATA-less, Initiator-less promoter and transcription is initiated at multiple start sites over a 126 bp region. We confirmed the presence of three database polymorphisms (dbSNP) by direct sequencing of the upstream region (rs1076991 C > T, rs8010584 G > A, rs4243628 G > T), with a fourth (dbSNP rs746488 A > T) not found to be polymorphic in our population and no novel polymorphisms identified. We demonstrate that a common SNP rs1076991 C > T within the window of transcriptional initiation exerts a significant effect on promoter activity in vitro. We investigated this SNP as a potential risk factor for NTDs in a large homogenous Irish population and determined that it is not an independent risk factor, but, it does increase both case (χ 2 = 11.06, P = 0.001) and maternal (χ 2 = 6.68, P = 0.01) risk when allele frequencies were analysed in combination with the previously identified disease-associated p.R653Q (c.1958 G > A; dbSNP rs2236225) polymorphism. These results provide the first insight into how MTHFD1 is regulated and further emphasise its importance during embryonic development
    corecore