9 research outputs found

    Late Bayesian inference in mental transformations

    Get PDF
    Many skills rely on performing noisy mental computations on noisy sensory measurements. Bayesian models suggest that humans compensate for measurement noise and reduce behavioral variability by biasing perception toward prior expectations. Whether a similar strategy is employed to compensate for noise in downstream mental and sensorimotor computations is not known. We tested humans in a battery of tasks and found that tasks which involved more complex mental transformations resulted in increased bias, suggesting that humans are able to mitigate the effect of noise in both sensorimotor and mental transformations. These results indicate that humans delay inference in order to account for both measurement noise and noise in downstream computations.Alfred P. Sloan Foundation (BR-2014-102)Esther A. and Joseph Klingenstein FundSimons Foundation (542993SPI)McKnight Endowment Fund for NeuroscienceMcGovern Institute for Brain Research at MI

    Environmental and Socio-Economic Factors as Contributors to Racial Disparities in Diabetes Prevalence

    No full text
    BACKGROUND We deployed a study design that attempts to account for racial differences in socioeconomic and environmental risk exposures to determine if the diabetes race disparity reported in national data is similar when black and white Americans live under similar social conditions. DESIGN & METHODS We compared data from the 2003 National Health Interview Survey (NHIS) with the Exploring Health Disparities in Integrated Communities-Southwest Baltimore (EHDIC-SWB) Study, which was conducted in a racially-integrated urban community without race differences in socioeconomic status. RESULTS In the NHIS, African Americans had greater adjusted odds of having diabetes compared to whites (OR: 1.61, 95% CI: 1.26−2.04); whereas, in EHDIC-SWB white and African Americans had similar odds of having diabetes (OR: 1.07, 95% CI: 0.71−1.58). Diabetes prevalence for African Americans was similar in NHIS and EHDIC-SWB (10.4%, 95%CI: 9.5−11.4 and 10.5%, 95%CI: 8.5−12.5, respectively). Diabetes prevalence among whites differed for NHIS (6.6%, 95%CI: 6.2−6.9%) and EHDIC-SWB (10.1%, 95%CI: 7.6−12.5%). CONCLUSIONS Race disparities in diabetes may stem from differences in the health risk environments that African Americans and whites live. When African Americans and whites live in similar risk environments, their health outcomes are more similar

    Environmental and societal factors associated with COVID-19-related death in people with rheumatic disease: an observational study

    No full text
    Published by Elsevier Ltd.Background: Differences in the distribution of individual-level clinical risk factors across regions do not fully explain the observed global disparities in COVID-19 outcomes. We aimed to investigate the associations between environmental and societal factors and country-level variations in mortality attributed to COVID-19 among people with rheumatic disease globally. Methods: In this observational study, we derived individual-level data on adults (aged 18-99 years) with rheumatic disease and a confirmed status of their highest COVID-19 severity level from the COVID-19 Global Rheumatology Alliance (GRA) registry, collected between March 12, 2020, and Aug 27, 2021. Environmental and societal factors were obtained from publicly available sources. The primary endpoint was mortality attributed to COVID-19. We used a multivariable logistic regression to evaluate independent associations between environmental and societal factors and death, after controlling for individual-level risk factors. We used a series of nested mixed-effects models to establish whether environmental and societal factors sufficiently explained country-level variations in death. Findings: 14 044 patients from 23 countries were included in the analyses. 10 178 (72·5%) individuals were female and 3866 (27·5%) were male, with a mean age of 54·4 years (SD 15·6). Air pollution (odds ratio 1·10 per 10 μg/m3 [95% CI 1·01-1·17]; p=0·0105), proportion of the population aged 65 years or older (1·19 per 1% increase [1·10-1·30]; p<0·0001), and population mobility (1·03 per 1% increase in number of visits to grocery and pharmacy stores [1·02-1·05]; p<0·0001 and 1·02 per 1% increase in number of visits to workplaces [1·00-1·03]; p=0·032) were independently associated with higher odds of mortality. Number of hospital beds (0·94 per 1-unit increase per 1000 people [0·88-1·00]; p=0·046), human development index (0·65 per 0·1-unit increase [0·44-0·96]; p=0·032), government response stringency (0·83 per 10-unit increase in containment index [0·74-0·93]; p=0·0018), as well as follow-up time (0·78 per month [0·69-0·88]; p<0·0001) were independently associated with lower odds of mortality. These factors sufficiently explained country-level variations in death attributable to COVID-19 (intraclass correlation coefficient 1·2% [0·1-9·5]; p=0·14). Interpretation: Our findings highlight the importance of environmental and societal factors as potential explanations of the observed regional disparities in COVID-19 outcomes among people with rheumatic disease and lay foundation for a new research agenda to address these disparities.MAG is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers K01 AR070585 and K24 AR074534 [JY]). KDW is supported by the Department of Veterans Affairs and the Rheumatology Research Foundation Scientist Development award. JAS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers K23 AR069688, R03 AR075886, L30 AR066953, P30 AR070253, and P30 AR072577), the Rheumatology Research Foundation (K Supplement Award and R Bridge Award), the Brigham Research Institute, and the R. Bruce and Joan M. Mickey Research Scholar Fund. NJP is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (T32-AR-007258). AD-G is supported by grants from the Centers for Disease Control and Prevention and the Rheumatology Research Foundation. RH was supported by the Justus-Liebig University Giessen Clinician Scientist Program in Biomedical Research to work on this registry. JY is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155).info:eu-repo/semantics/publishedVersio

    Tissue Engineering and Regenerative Repair in Wound Healing

    No full text

    Der gegenwärtige Stand der Outplacement-Diskussion

    No full text

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore