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Late Bayesian inference in mental transformations
Evan D. Remington1, Tiffany V. Parks 1 & Mehrdad Jazayeri 1

Many skills rely on performing noisy mental computations on noisy sensory measurements.

Bayesian models suggest that humans compensate for measurement noise and reduce

behavioral variability by biasing perception toward prior expectations. Whether a similar

strategy is employed to compensate for noise in downstream mental and sensorimotor

computations is not known. We tested humans in a battery of tasks and found that tasks

which involved more complex mental transformations resulted in increased bias, suggesting

that humans are able to mitigate the effect of noise in both sensorimotor and mental

transformations. These results indicate that humans delay inference in order to account for

both measurement noise and noise in downstream computations.
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When putting sensory information to use in the control
of behavior, the brain has to measure sensory infor-
mation, convert that information to behaviorally

relevant variables, and use those variables to guide actions. For
example, to catch a ball, the brain has to measure the position and
velocity of the ball, convert those measurements to an appropriate
movement plan, and then move the hand to catch the ball. Noise
in sensory measurements, noise during the transformation of
sensory measurements to behaviorally relevant variables, and
noise in the motor system can all contribute to outcome uncer-
tainty (Fig. 1a, top). Research in the past several decades has
demonstrated that the brain incorporates knowledge about sen-
sory and motor noise to optimize behavior. For example, when
multiple sensory cues are available, humans rely more heavily on
cues that are more reliable1–4. Similarly, humans use their prior
knowledge of the statistics of sensory inputs to improve sensory
estimates5–8. It has also been shown that humans optimize
movement trajectories by taking into account motor noise and
expected outcomes9,10. These and related observations in multiple
modalities11–15 have provided strong evidence that the brain
implements strategies to reduce the effect of noise in sensory and
motor systems on behavior.

Far less is known about whether and how humans account for
noise associated with the intervening stage of transforming sen-
sory measurements to behaviorally relevant variables. The ability
to apply such transformations reliably is central to our behavioral
repertoire and to the performance of athletes, musicians, and
professionals such as surgeons and airplane pilots. For example,
consider tracing an image while looking at the reflection of your
hand in a mirror. This is a challenging task, not because it is hard
to see or to draw, but because of the need to apply a mental
transformation to handle the inversion caused by the mirror.
Another example is the challenge of deciding whether two objects
viewed from different angles are the same16. In this case, in
addition to processing the visual features, one must mentally
“rotate” one or both objects to decide their similarity. Such sen-
sorimotor and mental transformations are ubiquitous and can
powerfully impact behavior13,17–22.

Motivated by the success of normative models showing that
humans use prior expectations to optimize behavior in the pre-
sence of sensory noise, we hypothesized that humans might be
able to minimize the effects of additional noise in sensorimotor
and mental transformations (hereafter, mental transformation
noise, MTN) by relying on the statistical regularities associated
with the outcome of those transformations. Importantly, this
hypothesis bears on where in the brain inferences are made. On
one hand, the brain might employ an “early inference” strategy in
which estimates are computed before a mental transformation is
applied (Fig. 1a, middle). This would bias estimates toward prior
expectations of the stimulus and reduce uncertainty associated
with the pre-inference sensory noise in the system5,23,24. In
some cases, it may be possible to introduce additional bias to an
early inference strategy to moderately reduce the effect of certain
kinds of post-inference noise25,26. However, biases prescribed by
an early inference strategy cannot mitigate variability caused
by post-inference MTN (Supplementary Figures 1–2). On the
other hand, the brain might adopt a “late inference” strategy
and generate inferences after the transformation stage as a part of
motor planning and decision making (Fig. 1a, bottom). Delaying
inference in this way would improve performance relative to the
early inference strategy by generating biases that can suitably
mitigate the effects of both sensory noise and MTN (Fig. 1b,
Supplementary Figure 3 and Supplementary Methods).

The early and late inference strategies make distinct predictions
about the effect of MTN on behavior (Fig. 1c). With an early
inference strategy, larger MTN would increase post-inference

noise and lead to comparable increases in behavioral variability.
In contrast, a late inference strategy in which MTN contributes to
pre-inference noise would avoid much of this variance and
improve performance by introducing additional biases toward the
mean of the prior distribution (Supplementary Figures 1–3 and
Supplementary Methods). Importantly, additional bias toward
prior expectations due to larger MTN is inconsistent with an early
inference strategy, and would constitute evidence that the brain
makes inferences after sensorimotor and mental transformations
(Fig. 1c).

Previous studies that only varied sensory and/or motor noise
were unable to distinguish between early and late inference
strategies. To distinguish between these two possibilities, it is
critical to vary MTN independently from changes in the sensory
and motor noise. To systematically vary MTN, we exploited the
observation that more complex mental transformations engender
more noise13,17,18,20,21. We devised several tasks, three sensor-
imotor and one perceptual, to test our hypothesis. In each task,
we compared performance between two contexts. In one context,
which we refer to as the “identity context”, the target quantity
matched a previously measured quantity. This was compared to a
more complex “remapped context” in which correct responses
required subjects to apply a non-identity transformation to the
sensory quantity. For example, subjects had to produce a duration
that was 50% longer than the stimulus. As expected, the remap-
ped context negatively impacted performance in all tasks,
revealing the degrading effect of MTN. However, increases in
MTN in the remapped context did not simply increase behavioral
variability; instead, it led to increased biases toward the mean of
the prior, an indication of the late Bayesian inference strategy that
takes MTN into account.

Results
Summary of task structure. We conducted four psychophysical
experiments, three involving sensorimotor tasks, and one invol-
ving a perceptual task. For the sensorimotor tasks, trials consisted
of two epochs: a measurement epoch during which a sensory
quantity (time interval or angle) was measured, and a subsequent
production epoch during which subjects had to produce a
quantity based on the preceding measurement. For each task, 11
or 12 subjects were tested in two contexts: an identity context in
which the produced quantity had to match the sensory quantity,
and a remapped context in which subjects had to apply a linear
transformation to the sensory quantity to compute the desired
produced quantity. For the perceptual task, the structure was
similar to the sensorimotor tasks. Subjects first measured a sen-
sory quantity (length) then provided a multiple choice response.

Experiment 1: Ready, Set, Go with gain of 1 and 1.5. Human
subjects performed a time interval measurement and production
task (Fig. 2a), also known as the “Ready, Set, Go” task, similar to a
previous study8. During the measurement epoch, subjects were
presented with a sample interval (ts; see Table 1 for all variables
and abbreviations) demarcated by two visual flashes, “Ready” and
“Set” (Fig. 2a). Subjects had to measure ts and produce an interval
(tp) afterwards by a key press (“Go”, no flashed stimuli). The
interval tp was measured from the start of the Set flash until the
key press. In both identity and remapped contexts, ts was drawn
from the same discrete uniform prior distribution with 11 values
ranging from 600 to 1000ms. In the identity context, the correct
interval (tc) was the same as ts, and in the remapped context, tc
was 1.5 times ts. In other words, the two contexts were identical
during the measurement epoch but differed with respect to the
production epoch. We denote these two contexts in terms of a
gain factor relating tc to ts: gain= 1 for the identity context, and
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gain= 1.5 for the remapped context. Subjects received trial-by-
trial feedback about their performance (see Methods).

We quantified performance with three statistics8: BIAS, which
summarizes the deviation of average responses from the correct
interval, √VAR, which summarizes the variability of responses
across ts, and RMSE, which summarizes the total root mean
square error. The three quantities are related through a sum of
squares: RMSE2= (√VAR)2+ BIAS2 (Fig. 1b). To ensure that the
results were not influenced by overall tendencies to be late or
early for all intervals, we calculated these statistics after removing
an offset term that accounted for subjects’ overall bias (see
Methods). For most subjects, the offset term was relatively small
(see Supplementary Table 1).

Figure 2b illustrates the behavior of a typical subject in the
identity (gray) and remapped (red) contexts. In the identity
context, tp had to match ts. However, responses were biased
toward the mean of the prior distribution, consistent with
Bayesian integration as was shown previously8,26,27 (Fig. 2b, in
gray). In the remapped context, tp had to be 50% longer than ts
(gain= 1.5). As expected by task requirements, tp values were
larger for each ts, and responses exhibited prior-dependent biases
similar to the identity context.

We hypothesized that applying a gain of 1.5 would cause an
increase in MTN, and would thus increase the total RMSE.
Additionally, we hypothesized that the increase in RMSE would
be predominantly due to an increase in bias, consistent with the
late inference hypothesis. We tested the first hypothesis
(increased MTN in the remapped context) by comparing
behavior in the remapped context to that predicted under the
null hypothesis of no additional MTN. The null hypothesis can be

formulated straightforwardly by assuming that subjects multi-
plied estimates of ts by 1.5. This predicts that the BIAS would be
1.5 times larger. Additionally, because of scalar variability in time
production28,29, √VAR and RMSE would also have to be scaled
by a factor of 1.5 (Fig. 2b, c). As shown by the example subject
(Fig. 2c; predicted RMSE= 130ms, 95% bootstrap CI= [126,
139] ms, n= 1000, actual RMSE= 187ms, 95% CI= [176, 197]
ms) as well as results across all 11 subjects (Fig. 3a, top), the
observed RMSE in the remapped context was consistently and
significantly higher than predicted under the null hypothesis
(predicted RMSE median= 122 ms, interquartile range (IQR)=
19 ms vs. observed median= 176 ms, IQR= 36 ms, p= 0.002,
Wilcoxon two-sided signed-rank test). This provides direct
evidence that MTN increased in the remapped context and
validates the logic of our experimental design in manipulating
MTN via changing the gain independently of sensory noise.

Having established an increase in MTN in the remapped
context, we tested the second hypothesis of whether the increase
in RMSE was due to an increase in BIAS as predicted by the late
inference strategy, or due to an increase in √VAR as predicted by
the alternative early inference strategy (Fig. 1). As shown in
Fig. 2c for one example subject, the increase in RMSE was
associated with an increase in BIAS, which can be readily seen as
an excess bias compared to the no additional MTN prediction
(Fig. 2b; predicted BIAS= 86 ms, 95% CI= [79, 97] ms, n=
1000, actual BIAS= 140 ms, 95% CI= [128, 156] ms). The results
for all subjects, summarized in Fig. 3a, indicate a clear increase in
BIAS in the remapped context relative to what was expected
under the hypothesis of no additional MTN (predicted BIAS
median= 79 ms, IQR= 28 ms vs. observed median= 113 ms,
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Fig. 1 Inference in the presence of sensory and mental transformation noise (MTN). a Observer models. Top: no inference. The observer makes a noisy
measurement (m) of a sensory stimulus (s), applies a noisy mental transformation to compute t, and aims to produce t through a noisy motor system
resulting in p. Across trials, p has a distribution (light gray) centered on the correct value (dashed line). Middle: early inference. After the noisy
measurement, the observer uses the prior statistics of s to infer ŝ, uses ŝ to generate t, and uses t to produce p. Since the inference is made before the
transformation (early inference), prior-dependent biases only reduce the effect of sensory noise that precedes the inference (pre-inference noise, blue
arrow), and not the uncertainty due to the post-inference transformation noise (red arrow), which directly increases variability. In this case, the distribution
of p (intermediate gray) is biased but has lower variance. Bottom: Late inference. The inference is made after the transformation based on the prior
statistics of t to generate an optimal inference, t̂, which is then used to produce p. Late inference leads to larger biases but allows the observer to account
for both sensory and transformation noise. The distribution of p values is more biased and less variable than the early inference strategy (dark gray bell-
shaped distribution). b Variability (√VAR), bias (BIAS), and RMSE for the three observer models in panel a. The sum of squares relationship between
√VAR, RMSE, and BIAS (top) can be depicted on a quarter circle (dashed lines) with the radius representing RMSE. Compared to the no inference strategy
(light gray), early inference (medium gray) increases BIAS while reducing √VAR and RMSE. Late inference (dark gray) further increases BIAS and
minimizes RMSE. c Effects of MTN on behavior. In early and late inference, additional MTN primarily increases √VAR and BIAS, respectively (compare
bright and dark red to gray). Crucially, the late inference leads to an overall smaller increase in RMSE (smaller radius of the dark circle compared to the
bright one). See the Supplementary Figures 1-3 and Supplementary Methods for a more detailed discussion of the effects of pre- and post-inference noise
on BIAS and √VAR and a quantitative comparison of the early and late inference models
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IQR= 44 p= 0.002, Wilcoxon two-sided signed-rank test).
Across subjects, there was also a smaller but consistent effect
on √VAR (predicted median= 98 ms, IQR= 15 ms vs. observed
median= 114 ms, IQR= 14 ms, p= 0.005, Wilcoxon two-sided
signed-rank test). RMSE, BIAS, and √VAR for individual subjects
are summarized in Supplementary Table 1. The substantial
increase in BIAS rejects the early inference hypothesis and
suggests that subjects implemented a late inference strategy.

Next, we compared the behavior of subjects in the two contexts
using a Bayesian observer-actor model (Equation 4). This model
comprises three stages: (1) a pre-inference stage characterizing all
noisy processes before the inference, (2) a deterministic inference
stage that uses knowledge about various sources of noise and
statistical regularities to generate an estimate, and (3) a post-
inference stage characterizing all noisy processes after the
inference. We parameterized pre-inference and post-inference
noise by Weber fractions wpre, and wpost, respectively. The
intervening inference stage implements an optimal Bayesian
estimator, denoted fBLS, which minimizes the expected RMSE
(Bayes least squares) given both pre- and post-inference sources
of noise. The model established Bayes-optimal behavior in the
identity context (Fig. 2b, “model fit,” bottom). We then fit the
same model to subjects’ data in the remapped context, allowing
wpre and wpost to take different values (Fig. 2b, “model fit,” top).
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Fig. 2 Time measurement and production task, gain= 1 and 1.5. a Trial structure. Each trial began with the presentation of a red fixation spot and a gray “Go
target”. Subjects had to measure a sample time interval ts demarcated by two flashes (“Ready” and “Set”). After Set, subjects had to press a key (“Go”) to
produce an interval as close as possible to the correct interval tc= gain × ts. In the “identity” context, the correct interval was the same as ts (gain= 1),
whereas in the “remapped” context, the gain was 1.5. The ratio between the distances of Go and Ready to the fixation point was equal to the gain factor.
After the response, subjects received feedback via a colored circle, whose position relative to the Go target indicated the magnitude and sign of the error.
The color of the circle indicated whether the error was smaller than a fixed threshold (green for a “hit,” white for a “miss”; the example illustrates a hit trial).
b Behavior. Produced interval of a representative subject in the identity (gray) and remapped (red) contexts (filled circles: mean, shaded regions: mean ±
one standard deviation; dashed line: correct intervals). Solid lines represent the mean responses of a Bayesian observer-actor model (see Methods) fit to
the subject’s data separately for the two contexts; the dash-dot line in the gain= 1.5 condition corresponds to the prediction for the remapped context
under the null hypothesis, using parameters of the model fit to the identity context (H0: no additional MTN). The subject’s behavior shows excess bias
beyond what was predicted assuming no additional MTN. c √VAR vs. BIAS for the two contexts (gray: identity, dark red: remapped), as well as the
prediction for the remapped context assuming no additional MTN (empty circle). This prediction underestimates RMSE indicating larger MTN for the
remapped context. A substantial portion of increased RMSE was due to an increase in BIAS (“excess bias”). Dashed quarter circles illustrate combinations
of BIAS vs. √VAR giving rise to equal RMSE; error bars represent 95% confidence intervals estimated using a bootstrap procedure (n= 1000)

Table 1 Variables and abbreviations

MTN Mental transformation noise

BIAS Summary bias
√VAR Summary standard deviation
RMSE Root mean square error
lc Correct length interval
ls Sample length interval
σpre Pre-inference standard deviation
σpost Post-inference standard deviation
tc Correct time interval
ti Inferred time interval
tm Measured time interval
tpre Pre-inference time interval
tp Produced time interval
ts Sample time interval
θc Correct angle
θs Sample angle
wpre Pre-inference Weber fraction
wpost Post-inference Weber fraction
fBLS Observer-actor Bayes-Least-Squares estimator
deg Visual degrees
ms Milliseconds
H0 Null hypothesis
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Since the model does not explicitly parameterize MTN, the effect
of MTN has to be subsumed by wpre and/or wpost.

To compare early vs. late inference strategies quantitatively, we
considered early inference and a late inference variants of the
observer-actor model (Fig. 1a, middle and bottom). In the early
inference model, wpre was associated with sensory measurement,
fBLS acted after the sensory measurement and before the
transformation, and wpost subsumed both MTN and production
noise. In the late inference model, in contrast, wpre subsumed
measurement noise and MTN, fBLS acted after the transformation
and before production, and wpost was associated with production
noise.

Before evaluating the model fits to subjects’ behavior in the two
contexts, we used simulations to assess the behavior of the early
and late inference models. As demonstrated in the Supplementary
Figures 1, 2, in this model, increases in BIAS are associated with
increases in wpre, and increases in √VAR, with increases in wpost.
Accordingly, if a subjects relies on the late inference strategy

(i.e., larger BIAS), we would expect the model fits to yield larger
value of wpre in the remapped context compared to the identity
context. In contrast, for the early inference strategy (larger
√VAR), fits of the model should predominantly lead to higher
values of wpost. Simulations also revealed that BIAS of an
observer-actor model that performs early inference is slightly
larger for larger values of wpost. However, this additional bias is
qualitatively different from the bias predicted by late inference
(i.e., increases in wpre). The bias caused by late inference is related
to the integration of the prior and leads to a regression to the
mean. In contrast, the bias increase of an observer-actor model in
the early inference strategy is due to scalar variability and is
independent of the prior8,26.

Given that the observed increase in BIAS in the remapped
context was substantial, we predicted that fitting the model to the
data would result in an increase in wpre with little or no change in
wpost. Model fits supported this prediction: wpre was substantially
higher in the remapped context (median= 0.17, IQR= 0.09)
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compared to the identity context (median= 0.11, IQR= 0.05;
p= 0.002, Wilcoxon two-sided signed-rank test; Fig. 3b, also see
Supplementary Table 1). We also found a small increase in wpost

(median= 0.09, IQR= 0.02 in the remapped context compared
to median= 0.06, IQR= 0.01 in the identity context). These
results substantiate that subjects used a late inference strategy to
mitigate MTN, although the exact strategy employed by subjects
may differ from the details of our model.

Experiment 2: Ready, Set, Go with gain of 1 and 0.75. Another
explanation that might account for the increased bias in the
remapped context is that subjects did not learn the transforma-
tion correctly. One possibility is that, instead of applying a gain,
subjects added a fixed offset to their responses for all sample
intervals. Another possibility is that subjects did apply a gain, but
their estimate of the gain was biased toward 1, which corresponds
to the easier identity context. Both scenarios would result in an
effective increase in bias and would therefore look qualitatively
similar to the predictions of a late Bayesian inference strategy.

To rule out the two alternative explanations based on offset
and biased gain, we devised another experiment in which subjects
had to apply a gain of 0.75 (instead of 1.5) to their measurement
of ts (Fig. 4a). Importantly, for the gain of 0.75, the pattern of
biases predicted by these alternative possibilities is the opposite of
what is expected by late inference. If subjects were to use a fixed
offset strategy to approximate a scaling with gain= 0.75, they
should subtract a fixed interval from their responses. Doing so
would result in overall shorter values of tp, but the slope of the
relationship between tp and ts would be larger than expected from
scaling responses by a factor of 0.75, resulting in smaller biases
than predicted under the assumption of no additional MTN.
Similarly, if subjects apply a biased gain (i.e., a gain that is
closer to unity than 0.75), responses should be less biased than
predicted from unity gain. These predictions can be readily

compared with the predictions of the late inference model, which
would predict the opposite pattern; i.e., increased biases similar
to the gain of 1.5.

Figure 4b shows the behavior of one subject in the timing task
for a gain factor of 0.75, compared with behavior in the unity
context. Both RMSE and BIAS were larger in the remapped
context (RMSE= 78 ms, 95% CI= [74, 82] ms; BIAS= 61 ms,
95% CI= [56, 66] ms) than predicted under the assumption
of no additional MTN (RMSE= 64 ms, 95% CI= [60, 67] ms;
BIAS= 40 ms, 95% CI= [36, 43] ms; Fig. 4c). In other words,
results followed the same pattern that was observed for the gain
of 1.5, suggesting that MTN was higher for the gain of 0.75 and
subjects used late inference to account for it.

Results for all subjects in the gain= 0.75 vs. identity context
are shown in Fig. 5. Compared with values predicted by behavior
in the identity context, subjects’ RMSE (predicted median= 65
ms, IQR= 18 ms vs. observed median= 79 ms, IQR= 29 ms,
p= 0.002, Wilcoxon two-sided signed-rank test), BIAS (predicted
median= 40 ms, IQR= 15ms vs. observed median= 52 ms,
IQR= 26 ms, p= 0.009, Wilcoxon two-sided signed-rank test),
and fitted wpre values were higher in the remapped context
(identity median= 0.12, IQR= 0.04 vs. remapped median= 0.16,
IQR= 0.09, p= 0.009, Wilcoxon two-sided signed-rank test).

One potential concern in this experiment is that applying a
gain of 0.75 to the smallest values of ts (e.g., 600 ms) requires
subjects to produce intervals in the range of 450 ms, which
demands relatively fast response times. Subjects whose natural
reaction times are relatively slow may find it difficult to produce
short tp values, and their behavior may exhibit biases when ts
is short and gain is 0.75. To ensure the biases we observed
were not due to such “floor effect”, we redid our analysis of BIAS
for ts greater than the median. Consistent with the full ts
distribution, BIAS was larger in the remapped context than
predicted under the assumption of no additional MTN (observed
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Fig. 2a, except that in the remapped context, the gain was 0.75. b Performance of an example subject in the identity (gray) and remapped (red) contexts.
Results are shown in the same format as Fig. 2 except that the remapped data correspond to the gain of 0.75. Similar to gain= 1.5 (Fig. 2b), the subject’s
behavior shows excess bias beyond what was predicted assuming no additional MTN. The same identity context data was used as a comparison for both
gain= 0.75 and gain= 1.5. Shaded regions show mean ± one standard deviation. c√VAR vs. BIAS plot for the gain of 1 and 0.75 shown in the same format
as Fig. 2c. RMSE in the and BIAS in the remapped context were both larger than predicted assuming no additional MTN. Error bars represent 95%
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median= 57 ms, IQR= 25 ms vs. predicted median= 44ms,
IQR= 15 ms, p= 0.007, Wilcoxon two-sided signed-rank test).
See Supplementary Table 2 for individual subjects’ results. These
results rule out the possibility that increased bias in the remapped
condition can be explained by an offset or biased gain.

Experiment 3: center-out reaching task with rotation of 0 and 60°.
So far, our results provide evidence that humans generate infer-
ences by combining prior information with noisy mental trans-
formations. However, is such inference specific to multiplicative
temporal transformations or can it generalize across different
types of transformations across modalities? To address this, we
tested subjects on a center-out reaching task19,30 in which the
transformation was not multiplicative but instead consisted of a
constant visuomotor rotation31. Subjects viewed stimuli on an
upwards facing monitor and then made responses by moving a
digitizer beneath the monitor. Subjects were asked to move the
cursor from a central starting position through the position of a
target which was flashed briefly at the beginning of each trial at

various angles on a visible circle (Fig. 6a). In the remapped
context, the response cursor position was rotated 60° counter-
clockwise around the center of the circle relative to subjects’ hand
position. Thus, this task also differed from the previous tasks in
that the transformation was applied to subjects’ responses, rather
than to the target values.

Performance for one subject is shown in Fig. 6b, c, and
population results are shown in Fig. 7. Because the transforma-
tion in this task did not involve a gain (scaling) factor, the no-
MTN prediction for BIAS in the remapped context was equal to
that measured in the identity context. Similarly, because in this
task we modeled both measurement and production noise as
non-scalar1,2,30, the no-MTN prediction for √VAR (and therefore
also RMSE) was also equivalent to that computed in the identity
context. Consistent with the tasks involving multiplicative
transformations, both RMSE (8.6 deg, 95% CI= [8.2, 9.1] deg)
and BIAS (6.1 deg, 95% CI= [5.6, 6.8] deg) were higher in the
remapped context than in the identity context (2.9 deg, 95% CI=
[2.7, 3.0] deg and 0.72 deg, 95% CI= [0.6, 0.9] deg, respectively),
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suggesting that MTN was larger for the transformation associated
with a 60 degree visuomotor rotation. Across subjects, RMSE
(identity median= 2.3, IQR= 0.76, remapped median= 7.9,
IQR= 1.9, p= 0.001, Wilcoxon two-sided signed-rank test,
n= 11 subjects), BIAS (identity median= 0.55, IQR= 0.29,
remapped median= 3.8, IQR= 2.5, p= 0.001, Wilcoxon two-
sided signed-rank test), and √VAR (identity median= 2.2,
IQR= 0.78, remapped median= 6.96, IQR= 1.93, p= 0.001,
Wilcoxon two-sided signed-rank test) were substantially higher
in the remapped condition (Fig. 7a). Observer-actor model fits for
the remapped context were associated with higher values of
both pre-inference noise parameter σpre (identity median= 0.35,
IQR= 0.39 deg vs. remapped median= 6.4, IQR= 4.5 deg,
p= 0.002, Wilcoxon two-sided signed-rank test) and post-
inference noise parameter σpost (identity median= 2.2, IQR=
0.87 deg vs. remapped median= 6.4, IQR= 2.8 deg, p= 0.001,
Wilcoxon two-sided signed-rank test; Fig. 7b). Supplementary
Table 3 shows the parameter fits for individual subjects. The
observed increase in bias and σpre in the remapped context
indicate that applying a visuomotor transformation increased
MTN associated with planning reach direction, and that subjects
were able to deploy a late inference strategy to mitigate some of
this additional noise, similar to other tasks. Additionally, the
increase in variability observed in this task relative to previous
tasks suggest that the transformation also generated some post-
inference noise that subjects were not able to mitigate.

Experiment 4: length measurement and identification task. In
experiments 1–3, we characterized the effect of noise in sensor-
imotor transformations during precise and rapid movements.
However, humans can also perform mental transformations on

sensory variables outside the domain of sensorimotor tasks.
Therefore, we designed a task to test whether humans use late
inference even when the inferred variable is perceptual and not
directly involved in the control of a precise movement. Subjects
had to perform a two-interval multiple-choice forced-choice task
involving the measurement and identification of visual bars of
different lengths (Fig. 8a). On each trial, subjects measured the
length of a horizontal bar (i.e., sample length), and were subse-
quently presented with an array of vertical bars of different
lengths. Subjects had to identify the bar whose length was either
closest in length to the sample (identity context) or 1.5 times the
sample (remapped context).

Figure 8b shows the behavior of an example subject. Because
subjects were given as much time as needed to make their
selections, we assumed that non-scalar execution noise of hand
movements would not make a meaningful impact on behavior.
Predictions for RMSE, BIAS, and √VAR in this task were
therefore generated by multiplying values in the identity context
by 1.5 as in experiments 1 and 2. Similar to the sensorimotor
tasks, RMSE (0.76 deg, 95% CI= [0.71, 0.80] deg) for the example
subject was larger in the remapped context than predicted (0.62
deg, 95% CI= [0.59, 0.65] deg). This result indicates that mental
multiplication of a length by 1.5 is associated with higher
MTN. Next we measured BIAS to assess whether performance
was better explained by an early or late inference strategy.
BIAS (0.47 deg, 95% CI= [0.41, 0.50] deg) was larger in
the remapped context than predicted from the identity context
(0.2 deg, 95% CI= [0.16, 0.24] deg, respectively) suggesting
that the subject used the late inference strategy. These observa-
tions were consistent across subjects for both RMSE (predicted
median= 0.62, IQR= 0.10, observed median= 81, IQR= 0.13,
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p= 0.0005, Wilcoxon two-sided signed-rank test, n= 12) and
BIAS (predicted median= 0.21, IQR= 0.11, observed median=
0.37, IQR= 0.13, p= 0.0005, Wilcoxon two-sided signed-rank
test; Fig. 9a). There was also an increase in √VAR across subjects
(predicted median= 0.58, IQR= 0.10, remapped median= 0.70,
IQR= 0.08, p= 0.001, Wilcoxon two-sided signed-rank test).

To model behavior in this experiment, we started with a
measurement stage which was identical to that in experiments 1
and 2, reflecting the similarity in task structure. For the response
stage, we simplified the model by replacing the task of choosing a
response from a large (but finite) number of choices with the
limiting case of choosing from an infinite number of choices.
With this simplification, the model is mathematically equivalent
to that used in experiments 1 and 2, parameterized by wpre and
wpost. The observer-actor model fits for the remapped context
were associated with higher values of wpre (identity median=
0.05, IQR= 0.04 vs. remapped median= 0.09, IQR= 0.02,
p= 0.005, Wilcoxon two-sided signed-rank test), while we found
no systematic effect on wpost (identity median= 0.06, IQR= 0.01
vs. remapped median= 0.06, IQR= 0.02, p= 0.97, Wilcoxon
two-sided signed-rank test; Fig. 9b). See Supplementary Table 4

for individual subjects’ results, and Supplementary Figure 4 for
the results of a sensorimotor version of the task which were
consistent with those shown here. These results indicate that the
higher MTN in the remapped context is accompanied by higher
reliance on prior information in perceptual as well as sensor-
imotor tasks.

Discussion
The brain’s capacity to mitigate the effects of uncertainty was
previously noted in experiments that focused on sensory and/or
motor noise. The key advance in our work is the finding that the
brain has the capacity to establish a late inference strategy so
that behavior can account for the sources of noise associated with
sensorimotor and mental transformations of sensory inputs.

As we found in our work, and others found in other behavioral
settings13,17–22, mental transformations are noisy. Surprisingly
however, most previous studies did not take this source of noise
into consideration and focused on sensory inference5,7,8,32. While
this approach may be adequate when the sensory noise is the
dominant source of uncertainty33, mental transformations may
generate a substantial fraction of the total noise for many tasks.
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Our experiment was designed to identify the effects of transfor-
mation noise explicitly by comparing identity and remapped
behavioral contexts and thus manipulating MTN. However, many
previous experiments that ignored MTN and yet found the
behavior to be optimal might have misattributed MTN to noise
in sensory representations. We also point out that while all of
our experiments found evidence of a late inference strategy,
subjects displayed increased variability in the remapped contexts
beyond that predicted by an increase in pre-inference noise
for most experiments. In this regard, one observation is parti-
cularly revealing: the experiment with the smallest increase in
post-inference noise was the only purely perceptual task
(experiment 4), and the experiment in which the transformation
directly impacted movement-related visual feedback (experiment
3) was associated with the largest increase in post-inference
noise. In the other experiments in which the transformation
was between perceptual and motor domains, the increase in post-
inference noise was intermediate. Based on these observations,
we speculate that the extent to which MTN can be mitigated
through late inference may be related to where along the sensory-
to-motor pathways the transformation is implemented. It appears
that the MTN is most effectively mitigated for mental transfor-
mations in the perceptual domain, less so for sensorimotor
transformations and least for transformation that directly involve
the motor system.

A late inference strategy would account for various observations
in a wide range of tasks. One study found that reach movements in
three-dimensional space were consistently biased towards the cen-
troid of target distributions, particularly along the radial (distance)
axis, and that this bias was not seen when subjects performed a
simpler pointing task which only required wrist movements17. The
authors’ interpretation of these results was that the brain imple-
mented linear approximations to the true nonlinear transformations
between target location and motor commands34. An intriguing
alternative explanation might be that the increased bias was the
result of additional uncertainty imposed by the more challenging
task of reaching in 3D. Late inference may also explain patterns of
biases in other tasks that involve complex coordinate transforma-
tions35, or in cases where the task involved complex and potentially
noisy sensory computations7. Based on subjects’ performance in
challenging tasks, a few groups have suggested that the brain uses
knowledge of transformation noise to optimize behavior. For
example, it has been shown that when both visual and proprio-
ceptive information are available, subjects rely more strongly on the
modality that had the least transformational complexity21. Schlicht
and Schrater13 showed that subjects account for the effects of eye
position uncertainty in a grasping task by increasing grip aperture.
Moving beyond coordinate transformations, our late inference
model provides a natural explanation for why various post-sensory
cognitive operations may cause additional biases in behavior.
Examples include mental operations in the presence of memory
delays36,37, predictions of complex kinematics38,39, and pointing
under various memory loads20. All these observations are consistent
with our interpretation that humans have the capacity to mitigate
noise associated with arbitrary transformations using late inference.

It is an open question how late inference might be imple-
mented in the brain. In the standard formulation of Bayesian
inference in the perceptual domain, sensory estimates are gen-
erated on a trial-by-trial basis by combining a likelihood function
associated with an uncertain measurement with a prior dis-
tribution and a cost function. Implicit in this formulation is the
assumption that observers can flexibly produce optimal infer-
ences as one or more of these components change40. Similarly,
late inference could involve a representation of transformation-
associated likelihoods explicitly in the brain, such that observers
can flexibly produce optimal behavior as task demands change.

Ideally, the generation of intermediate (e.g., perceptual) point
estimates (i.e., inferences) would be avoided such that the like-
lihood function used would encapsulate both sensory and MTN-
related noise25.

Alternatively, subjects could learn to establish an optimal
stimulus-to-response mapping by adjusting behavior based on
trial-by-trial feedback without explicit representation of prob-
abilistic quantities41. In this case, changes in the environment or
internal noise structure would necessitate learning a new map-
ping. In our experiment, we did not verify whether subjects relied
on a flexible model of MTN or a learned stimulus-to-response
mapping. A more definitive assessment of how subjects learn to
apply late Bayesian inference would likely require (1) experiments
with multiple randomly intermixed gain factors and (2) assess-
ment of performance in the absence of feedback. However, we
speculate that the degree to which the brain can handle MTN
flexibly might depend on familiarity with the task and the desired
transformation. When the pertinent transformations are part of
the daily behavioral repertoire, the brain may exhibit more flex-
ibility and generalization. In contrast, when there is no need for
generalization, optimization of behavior with respect to MTN
may be more constrained. The levels of flexibility may also
depend on the overlap between task demands and a participant’s
skillset. For example, drummers, by virtue of their profession,
may find it easier to apply sophisticated transformations to time
intervals than others. While we do not know the various ways in
which the brain learns to optimize behavior, our results indicate
that a major goal of learning is to mitigate the effect of noise in
mental transformations.

Methods
Subjects. Human subjects aged 18–65 years participated in this study after giving
informed consent. All experiments were approved by the Committee on the Use of
Humans as Experimental Subjects at the Massachusetts Institute of Technology.
Semi-overlapping groups of 11 or 12 subjects completed experiments 1 and 3, and
experiments 2 and 4, respectively. Eleven subjects completed an additional
experiment shown in Supplementary Figure 4. Differences in number of subjects
across tasks were due to subject attrition. All subjects had normal or corrected-to-
normal vision.

Procedures. Experimental sessions lasted ~45–60 min. Each subject completed
1–4 sessions per week. Experiments were controlled by an open-source software
(MWorks; http://mworks-project.org/). All trials in experiments 1–3 began with
central fixation spot on a black background that subjects were asked to hold their
gaze on throughout the trial. Eye movements were not monitored. In experiments
1, 2, and 4, subjects viewed all stimuli binocularly from a distance of ~67 cm on
either a 23-inch Apple A1082 LCD monitor at a resolution of 1900 × 1200 driven
by an Intel Macintosh Mac Pro computer, or a 24-inch early 2009 Apple Mac Pro
at a refresh rate of 60 Hz in a dark, quiet room. In experiments 1 and 2, responses
were registered on a standard Apple Keyboard connected to the experimental
machine. In experiment 3 as well as the experiment in Supplementary Figure 4,
subjects viewed stimuli from above on a 21.5-inch Samsung SyncMaster SA200
monitor, and responses were registered using a pen digitizer tablet (Wacom
Intuos5 touch); the stylus was fixed at a vertical position inside a custom printed
handle which subjects grasped. In experiment 4, responses were registered with a
standard computer mouse.

Behavioral tasks. Our objective in all experiments was to investigate the effect of
mental transformation noise (MTN) on performance. To do so, each experiment
consistent of two contexts, an “identity” context, and a more challenging
“remapped” context that was expected to involve higher levels of MTN. In each
experiment, human subjects measured a scalar sensory quantity (time interval,
length, or angle on a circle) drawn from a prior distribution. In the “identity”
context, subjects had to reproduce or identify the sensory quantity (the sample),
and in the “remapped” context, they had to produce or identify the same quantity
subjected to a linear transformation. Subjects whose responses for the shortest and
longest stimuli in the identity context were at least one d′ (d-prime) apart were
invited to participate in the main experiment. Three subjects were excluded, all for
experiments 1 and 2. Subjects completed one training session for each experimental
condition to familiarize with the task and verify that their behavior was reasonably
stable. These training sessions were followed by two to three test sessions on which
the reported analyses were conducted.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06726-9 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:4419 | DOI: 10.1038/s41467-018-06726-9 | www.nature.com/naturecommunications 11

http://mworks-project.org/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Experiments 1 and 2: time interval estimation and production task. The
behavioral task used in experiment 1 was a variant of the Ready, Set, Go task used
in a previous study8. Subjects had to measure a sample interval drawn from an 11-
point discrete uniform distribution between 600 and 1000 ms, then immediately
produce an interval that was equal to the sample interval multiplied by a gain
factor. The sample interval was demarcated by two visual flashes (“Ready” and
“Set”) located to the left and above a fixation point at the center of a computer
monitor. The production interval was defined as the interval between the onset of
the second flash and the response (key press) of the subject. In the identity context,
the gain was 1, whereas in the remapped contexts the gain was either 1.5 or 0.75.
The gain was fixed in each behavioral session and was communicated at the
beginning of each session as either “same,” “shorter,” or “longer.” The gain was also
provided visually: the ratio between the distances of a “Go” target and Ready to the
fixation point was equal to the gain factor.

Feedback schedule. Following each response, subjects were informed about their
performance by a circular feedback stimulus which appeared either to the left (for
early responses) or right (for late responses) of the Go target. The distance between
the feedback stimulus and the Go target was proportional to the magnitude of the
error, and the color of the feedback stimulus was either green to indicate a “hit” or
white to indicate a “miss.” Subjects completed two consecutive sessions of 600 trials
for the identity context; the hit/miss threshold was on a trial-by-trial one-up one-
down staircase for the first training session and fixed for the second test session at
the mean of the last 100 trials of the first session. For the remapped context
sessions (also 600 trials), the error threshold was on a one-up one-down staircase.
Classifying trials as hits or misses only served as motivation for subjects and was
not pertinent to the analyses nor did it affect the task contingencies beyond the
color of the feedback stimulus.

Experiment 3: center out reaching task. Subjects were briefly presented (500 ms
duration) with a target placed on a response circle of approximately 10° radius with
an angle drawn from an 11-point discrete uniform distribution 45 degrees wide and
centered at directly ahead. Subjects were instructed to then rapidly reach “through”
the target location in a single straight movement. Once the response motion had
commenced, as measured by the manipulandum crossing an eccentricity threshold
of 2° from the starting position at the center of the response circle, a small circle
tracked the position of the manipulandum. The “production” was the angle at
which the cursor intersected the response circle. To encourage ballistic movements
and minimize online error correction, subjects had 250 ms to reach the perimeter
of the response circle once movement was detected. In this task, the transformation
was applied to the response rather than the sample: in the remapped context, the
position of the manipulandum indicated on the screen, as well as the produced
angle, was rotated 60° clockwise. The transformation was communicated by telling
subjects that they should proactively correct for an imposed rotation, but the exact
angle of the rotation was not given. Response feedback was similar to the previous
two tasks, with the difference being that the feedback was rotated according to the
context, with which subjects could learn the angle of rotation. The produced angle
was shown as a green or red disk placed on the response perimeter along with the
correct target position. As in the length measurement and production task, subjects
completed four sessions total with each session comprising two blocks of 150 trials
of identity and remapped trials. We excluded the first 25 trials of each block from
analysis to reduce the impact of transient adaptation effects31. The error threshold
for each gain was on a staircase for the first two sessions and fixed for the final two
at the mean of the last 100 trials for each gain. The order of identity and remapped
blocks (identity first or second) was counterbalanced across subjects.

Experiment 4: length measurement and identification task. Subjects measured
a briefly presented (50 ms duration) horizontal gray line with length drawn from a
7-point discrete uniform distribution between 4 and 7 degrees visual angle. The
position of the sample line was randomly selected within a 6 by 6 degrees visual
angle window centered on the screen. After the horizontal line was extinguished
and a delay of 500 ms, subjects were shown a set of 29 vertical lines of different
lengths and selected the response line using a mouse. There was no time limit to
make a response. In the identity context subjects were asked to select the line
matching the length of the sample line with response lines evenly spaced between 2
and 9 degrees visual angle, while in the remapped context subjects selected a
response line 1.5 times the length of the sample with response lines evenly spaced
between 3 and 13.5 degrees visual angle. The order of the response lines, ascending
or descending from the left side of the screen, was randomly determined across
trials. The vertical location of the response lines was randomly positioned within 3
degrees visual angle from the center of the screen. The gain was communicated by
telling subjects at the start of the first session to produce either “the same as” or
“one and a half times” the length of the sample. For feedback, the correct length
was shown in white to the right of the selected line which was shown in green for a
“hit” if the selected line was equal to or within one choice of the correct length and
red for a “miss” otherwise. As in experiment 4, subjects completed four sessions
with two blocks of 150 trials for each context. The order of blocks was counter-
balanced across subjects.

Data analysis. Behavioral performance in all tasks was quantified with three
statistics8: BIAS, √VAR, and RMSE. BIAS summarizes the difference between
average and correct responses across all sample values and is defined for the case of
a discrete uniform prior distribution as

BIAS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½bias2�
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

X

N

i¼1

bias2i

v

u

u

t ð1Þ

where biasi is the difference between the mean response and correct response for a
particular sample value and N is the number of sample values tested. √VAR
summarizes the variability of responses:

ffiffiffiffiffiffiffiffiffiffi

VAR
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

E½var�
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

X

N

i¼1

vari

v

u

u

t ð2Þ

where vari is the variance of the responses for a particular sample value. Because
samples were drawn randomly, it was not the case that the number of trials for each
sample was exactly the same. Therefore, averages of for BIAS and √VAR were
normalized across samples according to the number of trials presented. Finally,
RMSE was calculated as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VAR þ BIAS2
p

ð3Þ

Prior to analyzing data, we identified and removed “lapse” trials for each
subject. This involved finding and removing trials for which responses were greater
than three times the median absolute deviation from the mean response for a
particular sample quantity and context. All confidence intervals were basic
bootstrap confidence intervals (n= 1000).

Model descriptions and fitting procedure. Previously, we found that a Bayesian
observer model captured the behavior of human subjects in the RSG task,
explaining behavior explicitly in terms of noise associated with sensory measure-
ment and motor production8. Here, the model is formulated more generally in
terms of pre- and post-inference processes, as we are interested in identifying
additional noisy computations beyond measurement and production which may
occur prior to or after inference. Additionally, following previous work showing
that humans account for response variability when planning actions9,10, we aug-
mented the inference stage to account for post-inference variability26. This
“observer-actor” model consists of three stages: a noisy pre-inference stage, a
deterministic Bayesian inference stage, and a noisy post-inference stage. We
describe the model for the RSG task, although the structure is the same for all
experiments. First, the noisy pre-inference value tpre (t represents time) is generated
according to the noise model p(tpre|ts), then used to generate an inference ti which
minimizes the expected loss given tpre:

ti ¼ fBLS tpre
� �

¼ argmin
t tc tp

tp � tc
� �2

pðtcjtpreÞpðtpjtÞπðtcÞdtpdtc ð4Þ

In this equation, π(tc) represents the observer’s “prior” belief about the correct
value being inferred, tc, and the loss function is the squared difference between tp
and tc (squared error). Note that tpre can represent either the noisy measurement or
the noisy transformed value, and π(tc) can represent the prior over sensory or
transformed values, depending on whether the observer adopts an early or late
inference strategy, respectively (Fig. 1a). The model then generates tp according to
the production noise model p(tp|ti). The observer-actor model has two free
parameters which are associated with the variances of p(tpre|ts) and p(tp|ti). For RSG
(experiments 1 and 2), both p(tpre|ts) and p(tp|ti) were modeled as scalar Gaussian
random variables (i.e., with standard deviation proportional to the mean) with
parameters wpre and wpost representing the Weber fractions for p(tpre|ts) and p(tp|ti),
respectively. In experiment 3, both measurement and production were modeled as
Gaussian random variables σpre and σpost, while in experiment 4, both measurement
stages were modeled as scalar Gaussian random variables.

The solution to Eq. 4 depends on the model for production noise. For the case
of Gaussian production noise (experiment 3), the optimal inference is the
conditional expectation of tc given tpre, or ti ¼ E½tcjtpre�. For scalar Gaussian noise

(experiments 1, 2, and 4), ti ¼ E tcjtpre
h i

=ð1þ w2
postÞ. The denominator modestly

shifts inferences towards shorter values to avoid the increased noise associated with
longer values under scalar variability. However, this effect on BIAS is small
compared to that associated with the prior. Generally for all experiments, the
model captures high response variability by increases in wpost, and large response
biases toward the mean of the prior by increases in wpre. See Supplementary
Figures 1 for a simulation of the effects of wpre, and wpost, and Supplementary
Figure 2 and Supplementary Methods for a formal analysis in the case of Gaussian
internal noise and prior.

Model parameters were fit by maximizing the log-likelihood of subjects’
responses given the sample values and gain. The maximization was done using the
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fminsearch command in MATLAB (Mathworks). Model fitting and simulation
involved numerical integration over the posterior distribution using Simpson’s rule.
Parameter searches were repeated ten times each with different parameter
initialization, and results were inspected for consistency.

Data availability
The datasets generated during and/or analyzed during the current study are available
from the corresponding author on reasonable request.
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