4,314 research outputs found

    Palladium, platinum, and gold distribution in serpentinite seamounts in the Mariana and Izu-Bonin forearcs: evidence from Leg 125 fluids and serpentinites

    No full text
    Palladium, platinum, and gold were analyzed for 20 interstitial water samples from Leg 125. No Pd or Pt was detected in fluids from serpentinite muds from Conical Seamount in the Mariana forearc, indicating that low-temperature seawater-peridotite interaction does not mobilize these elements into the serpentinizing fluids to levels above 0.10 parts per billion (ppb) in solution. However, Au may be mobilized in high pH solutions. In contrast, fluids from vitric-rich clays on the flanks of the Torishima Seamount in the Izu-Bonin forearc have Pd values of between 4.0 and 11.8 nmol/L, Pt values between 2.3 and 5.0 nmol/L and Au values between 126.9 and 1116.9 pmol/L. The precious metals are mobilized, and possibly adsorbed onto clay mineral surfaces, during diagenesis and burial of the volcanic-rich clays. Desorption during squeezing of the sediments may produce the enhanced precious metal concentrations in the analyzed fluids. The metals are mobilized in the fluids probably as neutral hydroxide, bisulfide, and ammonia complexes. Pt/Pd ratios are between 0.42 and 2.33, which is much lower than many of the potential sources for Pt and Pd but is consistent with the greater solubility of Pd compared with Pt in most natural low-temperature fluids

    Palladium, platinum, and gold distribution in serpentinite seamounts in the Mariana and Izu-Bonin forearcs: evidence from Leg 125 fluids and serpentinites

    No full text
    Palladium, platinum, and gold were analyzed for 20 interstitial water samples from Leg 125. No Pd or Pt was detected in fluids from serpentinite muds from Conical Seamount in the Mariana forearc, indicating that low-temperature seawater-peridotite interaction does not mobilize these elements into the serpentinizing fluids to levels above 0.10 parts per billion (ppb) in solution. However, Au may be mobilized in high pH solutions. In contrast, fluids from vitric-rich clays on the flanks of the Torishima Seamount in the Izu-Bonin forearc have Pd values of between 4.0 and 11.8 nmol/L, Pt values between 2.3 and 5.0 nmol/L and Au values between 126.9 and 1116.9 pmol/L. The precious metals are mobilized, and possibly adsorbed onto clay mineral surfaces, during diagenesis and burial of the volcanic-rich clays. Desorption during squeezing of the sediments may produce the enhanced precious metal concentrations in the analyzed fluids. The metals are mobilized in the fluids probably as neutral hydroxide, bisulfide, and ammonia complexes. Pt/Pd ratios are between 0.42 and 2.33, which is much lower than many of the potential sources for Pt and Pd but is consistent with the greater solubility of Pd compared with Pt in most natural low-temperature fluids

    Trace element geochemistry of peridotites from the Izu-Bonin-Mariana Forearc, Leg 125

    No full text
    Trace element analyses (first-series transition elements, Ti, Rb, Sr, Zr, Y, Nb, and REE) were carried out on whole rocks and minerals from 10 peridotite samples from both Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc using a combination of XRF, ID-MS, ICP-MS, and ion microprobe. The concentrations of incompatible trace elements are generally low, reflecting the highly residual nature of the peridotites and their low clinopyroxene content (n ratios in the range of 0.05-0.25; several samples show possible small positive Eu anomalies. LREE enrichment is common to both seamounts, although the peridotites from Conical Seamount have higher (La/Ce)n ratios on extended chondrite-normalized plots, in which both REEs and other trace elements are organized according to their incompatibility with respect to a harzburgitic mantle. Comparison with abyssal peridotite patterns suggests that the LREEs, Rb, Nb, Sr, Sm, and Eu are all enriched in the Leg 125 peridotites, but Ti and the HREEs exhibit no obvious enrichment. The peridotites also give positive anomalies for Zr and Sr relative to their neighboring REEs. Covariation diagrams based on clinopyroxene data show that Ti and the HREEs plot on an extension of an abyssal peridotite trend to more residual compositions. However, the LREEs, Rb, Sr, Sm, and Eu are displaced off this trend toward higher values, suggesting that these elements were introduced during an enrichment event. The axis of dispersion on these plots further suggests that enrichment took place during or after melting and thus was not a characteristic of the lithosphere before subduction. Compared with boninites sampled from the Izu-Bonin-Mariana forearc, the peridotites are significantly more enriched in LREEs. Modeling of the melting process indicates that if they represent the most depleted residues of the melting events that generated forearc boninites they must have experienced subsolidus enrichment in these elements, as well as in Rb, Sr, Zr, Nb, Sm, and Eu. The lack of any correlation with the degree of serpentinization suggests that low-temperature fluids were not the prime cause of enrichment. The enrichment in the high-field-strength elements also suggests that at least some of this enrichment may have involved melts rather than aqueous fluids. Moreover, the presence of the hydrous minerals magnesio-hornblende and tremolite and the common resorption of orthopyroxene indicate that this high-temperature peridotite-fluid interaction may have taken place in a water-rich environment in the forearc following the melting event that produced the boninites. The peridotites from Leg 125 may therefore contain a record of an important flux of elements into the mantle wedge during the initial formation of forearc lithosphere. Ophiolitic peridotites with these characteristics have not yet been reported, perhaps because the precise equivalents to the serpentinite seamounts have not been analyzed

    A detailed binding free energy study of 2 : 1 ligand–DNA complex formation by experiment and simulation

    Get PDF
    In 2004, we used NMR to solve the structure of the minor groove binder thiazotropsin A bound in a 2 : 1 complex to the DNA duplex, d(CGACTAGTCG)2. In this current work, we have combined theory and experiment to confirm the binding thermodynamics of this system. Molecular dynamics simulations that use polarizable or non-polarizable force fields with single and separate trajectory approaches have been used to explore complexation at the molecular level. We have shown that the binding process invokes large conformational changes in both the receptor and ligand, which is reflected by large adaptation energies. This is compensated for by the net binding free energy, which is enthalpy driven and entropically opposed. Such a conformational change upon binding directly impacts on how the process must be simulated in order to yield accurate results. Our MM-PBSA binding calculations from snapshots obtained from MD simulations of the polarizable force field using separate trajectories yield an absolute binding free energy (-15.4 kcal mol-1) very close to that determined by isothermal titration calorimetry (-10.2 kcal mol-1). Analysis of the major energy components reveals that favorable non-bonded van der Waals and electrostatic interactions contribute predominantly to the enthalpy term, whilst the unfavorable entropy appears to be driven by stabilization of the complex and the associated loss of conformational freedom. Our results have led to a deeper understanding of the nature of side-by-side minor groove ligand binding, which has significant implications for structure-based ligand development

    Clinical effectiveness and cost-effectiveness of pegvisomant for the treatment of acromegaly: a systematic review and economic evaluation

    Get PDF
    Background: Acromegaly, an orphan disease usually caused by a benign pituitary tumour, is characterised by hyper-secretion of growth hormone (GH) and insulin-like growth factor I (IGF-1). It is associated with reduced life expectancy, cardiovascular problems, a variety of insidiously progressing detrimental symptoms and metabolic malfunction. Treatments include surgery, radiotherapy and pharmacotherapy. Pegvisomant (PEG) is a genetically engineered GH analogue licensed as a third or fourth line option when other treatments have failed to normalise IGF-1 levels. Methods: Evidence about effectiveness and cost-effectiveness of PEG was systematically reviewed. Data were extracted from published studies and used for a narrative synthesis of evidence. A decision analytical economic model was identified and modified to assess the cost-effectiveness of PEG. Results: One RCT and 17 non-randomised studies were reviewed for effectiveness. PEG substantially reduced and rapidly normalised IGF-1 levels in the majority of patients, approximately doubled GH levels, and improved some of the signs and symptoms of the disease. Tumour size was unaffected at least in the short term. PEG had a generally safe adverse event profile but a few patients were withdrawn from treatment because of raised liver enzymes. An economic model was identified and adapted to estimate the lower limit for the cost-effectiveness of PEG treatment versus standard care. Over a 20 year time horizon the incremental cost-effectiveness ratio was pound81,000/QALY and pound212,000/LYG. To reduce this to pound30K/QALY would require a reduction in drug cost by about one third. Conclusion: PEG is highly effective for improving patients' IGF-1 level. Signs and symptoms of disease improve but evidence is lacking about long term effects on improved signs and symptoms of disease, quality of life, patient compliance and safety. Economic evaluation indicated that if current standards (UK) for determining cost-effectiveness of therapies were to be applied to PEG it would be considered not to represent good value for money

    Stable chromium isotopic composition of meteorites and metal-silicate experiments: Implications for fractionation during core formation

    Get PDF
    We present new mass independent and mass dependent Cr isotope compositions for meteorites measured by double spike thermal ionisation mass spectrometry. Small differences in both mass independent 53Cr and 54Cr relative to the Bulk Silicate Earth are reported and are very similar to previously published values. Carbonaceous chondrites are characterised by an excess in 54Cr compared to ordinary and enstatite chondrites which make mass independent Cr isotopes a useful tool for distinguishing between meteoritic groups. Mass dependent stable Cr isotope compositions for the same samples are also reported. Carbonaceous and ordinary chondrites are identical within uncertainty with average ÎŽ53CrÎŽ53Cr values of −0.118±0.040‰−0.118±0.040‰ and −0.143±0.074‰−0.143±0.074‰ respectively. The heaviest isotope compositions are recorded by an enstatite chondrite and a CO carbonaceous chondrite, both of which have relatively reduced chemical compositions implying some stable Cr isotope fractionation related to redox processes in the circumstellar disk. The average ÎŽ53CrÎŽ53Cr values for chondrites are within error of the estimate for the Bulk Silicate Earth (BSE) also determined by double spiking. The lack of isotopic difference between chondritic material and the BSE provides evidence that Cr isotopes were not fractionated during core formation on Earth. A series of high-pressure experiments was also carried out to investigate stable Cr isotope fractionation between metal and silicate and no demonstrable fractionation was observed, consistent with our meteorites data. Mass dependent Cr isotope data for achondrites suggest that Cr isotopes are fractionated during magmatic differentiation and therefore further work is required to constrain the Cr isotopic compositions of the mantles of Vesta and Mars.

    Novel massless phase of Haldane-gap antiferromagnets in magnetic field

    Full text link
    The behavior of Haldane-gap antiferromagnets in strong magnetic field is not universal. While the low-energy physics of the conventional 1D spin-1 Heisenberg model in its magnetized regime is described by one incommensurate soft mode, other systems with somewhat perturbed coupling constants can possess two characteristic soft modes in a certain range of the field strength. Such a {\em two}-component Lutinger liquid phase is realised above the massive Haldane-gap phase, and in general above any massive nonmagnetic phase, when the ground state exhibits short range incommensurate fluctuations already in the absence of the field.Comment: 4 pages, 2 eps figures, to appear in Phys Rev B: Rapid Communication

    Understanding Far-Infrared Absorption in the S=1 Antiferromagnetic Chain Compound NENP

    Full text link
    Infrared transmission measurements on the S=1S=1 antiferromagnetic chain compound NENP in applied magnetic fields show a sharp absorption line at the field-shifted Haldane gap. This violates a wave-vector selection rule of the Hamiltonian normally used for NENP, as the gap excitations occur at the Brillouin zone boundary. We argue that the crystal structure admits terms which can explain the absorption lines. In addition, in an applied field, staggered orientations of the g-tensors produce a staggered magnetic field. This can explain the observation of a finite gap at all applied fields.Comment: 12 pages, revtex, preprint HU-CMT-93H9

    Quantum Spin Chains and the Conformal Anomaly

    Get PDF
    The conformal anomaly c determines the universality class of a model system in statistical mechanics. The value of c characterizes both 2D classical models and their 1D quantum counterparts. The conformal anomaly may therefore be determined numerically for quantum spin chains using the relation: E 0(N)≂E 0(∞)−(NΔE/12)c(1/N 2), where E 0 (N) is the ground‐state energy of an N‐spin finite system, E 0 (∞) is the ground‐state energy in the thermodynamic limit, and ΔE is the energy gap between the ground state at k=0 and the first excited state of the dispersion curve at k=2π/N. The numerical approach is highly successful when tested on the integrable s= 1/2 Heisenberg antiferromagnetic X X Z chain and the integrable s=1 SU(2) model. The method gives c=1 to within 2% accuracy for the s=1 and (3)/(2) X Y chains, placing them in the universality class of the 2D X Y model. The result c=1 (2% accuracy) is obtained for the s= (3)/(2) Heisenberg antiferromagnetic chain, in agreement with the Haldane prediction. The s=1 pure antiferromagnetic biquadratic chain and the s=1 X X Z model with uniaxial anisotropy in the vicinity of the critical point Δ=Δ2 ∌1.15 −1.18 have also been studied
    • 

    corecore