407 research outputs found
Acoustic Power Absorption and its Relation with Vector Magnetic Field of a Sunspot
The distribution of acoustic power over sunspots shows an enhanced absorption
near the umbra--penumbra boundary. Earlier studies revealed that the region of
enhanced absorption coincides with the region of strongest transverse potential
field. The aim of this paper is to (i) utilize the high-resolution vector
magnetograms derived using Hinode SOT/SP observations and study the
relationship between the vector magnetic field and power absorption and (ii)
study the variation of power absorption in sunspot penumbrae due to the
presence of spine-like radial structures. It is found that (i) both potential
and observed transverse fields peak at a similar radial distance from the
center of the sunspot, and (ii) the magnitude of the transverse field, derived
from Hinode observations, is much larger than the potential transverse field
derived from SOHO/MDI longitudinal field observations. In the penumbra, the
radial structures called spines (intra-spines) have stronger (weaker) field
strength and are more vertical (horizontal). The absorption of acoustic power
in the spine and intra-spine shows different behaviour with the absorption
being larger in the spine as compared to the intra-spine.Comment: 18 pages, 7 figures, In Press Solar Physics, Topical Issue on
Helio-and-Astroseismolog
Enhanced Joule Heating in Umbral Dots
We present a study of magnetic profiles of umbral dots (UDs) and its
consequences on the Joule heating mechanisms. Hamedivafa (2003) studied Joule
heating using vertical component of magnetic field. In this paper UDs magnetic
profile has been investigated including the new azimuthal component of magnetic
field which might explain the relatively larger enhancement of Joule heating
causing more brightness near circumference of UD.Comment: 8 pages, 1 figure, accepted in Solar Physic
Computed tomography chest imaging offers no advantage over chest X-ray in the initial assessment of gestational trophoblastic neoplasia
Background
The International Federation of Gynaecology and Obstetrics (FIGO) score identifies gestational trophoblastic neoplasia (GTN) patients as low- or high-risk of single-agent chemotherapy resistance (SACR). Computed tomography (CT) has greater sensitivity than chest X-ray (CXR) in detecting pulmonary metastases, but effects upon outcomes remain unclear.
Methods
Five hundred and eighty-nine patients underwent both CXR and CT during GTN assessment. Treatment decisions were CXR based. The number of metastases, risk scores, and risk category using CXR versus CT were compared. CT-derived chest assessment was evaluated as impact upon treatment decision compared to patient outcome, incidence of SACR, time-to-normal human chorionic gonadotrophin hormone (TNhCG), and primary chemotherapy resistance (PCR).
Results
Metastasis detection (pâ<â0.0001) and FIGO score (pâ=â0.001) were higher using CT versus CXR. CT would have increased FIGO score in 188 (31.9%), with 43 re-classified from low- to high-risk, of whom 23 (53.5%) received curative single-agent chemotherapy. SACR was higher when score (pâ=â0.044) or risk group (pâ<â0.0001) changed. Metastases on CXR (pâ=â0.019) but not CT (pâ=â0.088) lengthened TNhCG. Logistic regression analysis found no difference between CXR (area under the curve (AUC)â=â0.63) versus CT (AUCâ=â0.64) in predicting PCR.
Conclusions
CT chest would improve the prediction of SACR, but does not influence overall treatment outcome, TNhCG, or prediction of PCR. Lower radiation doses and cost mean ongoing CXR-based assessment is recommended
Comment on "Resolving the 180-deg Ambiguity in Solar Vector Magnetic Field Data: Evaluating the Effects of Noise, Spatial Resolution, and Method Assumptions"
In a recent paper, Leka at al. (Solar Phys. 260, 83, 2009)constructed a
synthetic vector magnetogram representing a three-dimensional magnetic
structure defined only within a fraction of an arcsec in height. They rebinned
the magnetogram to simulate conditions of limited spatial resolution and then
compared the results of various azimuth disambiguation methods on the resampled
data. Methods relying on the physical calculation of potential and/or
non-potential magnetic fields failed in nearly the same, extended parts of the
field of view and Leka et al. (2009) attributed these failures to the limited
spatial resolution. This study shows that the failure of these methods is not
due to the limited spatial resolution but due to the narrowly defined test
data. Such narrow magnetic structures are not realistic in the real Sun.
Physics-based disambiguation methods, adapted for solar magnetic fields
extending to infinity, are not designed to handle such data; hence, they could
only fail this test. I demonstrate how an appropriate limited-resolution
disambiguation test can be performed by constructing a synthetic vector
magnetogram very similar to that of Leka et al. (2009) but representing a
structure defined in the semi-infinite space above the solar photosphere. For
this magnetogram I find that even a simple potential-field disambiguation
method manages to resolve the ambiguity very successfully, regardless of
limited spatial resolution. Therefore, despite the conclusions of Leka et al.
(2009), a proper limited-spatial-resolution test of azimuth disambiguation
methods is yet to be performed in order to identify the best ideas and
algorithms.Comment: Solar Physics, in press (19 pp., 5 figures, 2 tables
Modelling and Interpreting The Effects of Spatial Resolution on Solar Magnetic Field Maps
Different methods for simulating the effects of spatial resolution on
magnetic field maps are compared, including those commonly used for
inter-instrument comparisons. The investigation first uses synthetic data, and
the results are confirmed with {\it Hinode}/SpectroPolarimeter data. Four
methods are examined, one which manipulates the Stokes spectra to simulate
spatial-resolution degradation, and three "post-facto" methods where the
magnetic field maps are manipulated directly. Throughout, statistical
comparisons of the degraded maps with the originals serve to quantify the
outcomes. Overall, we find that areas with inferred magnetic fill fractions
close to unity may be insensitive to optical spatial resolution; areas of
sub-unity fill fractions are very sensitive. Trends with worsening spatial
resolution can include increased average field strength, lower total flux, and
a field vector oriented closer to the line of sight. Further-derived quantities
such as vertical current density show variations even in areas of high average
magnetic fill-fraction. In short, unresolved maps fail to represent the
distribution of the underlying unresolved fields, and the "post-facto" methods
generally do not reproduce the effects of a smaller telescope aperture. It is
argued that selecting a method in order to reconcile disparate spatial
resolution effects should depend on the goal, as one method may better preserve
the field distribution, while another can reproduce spatial resolution
degradation. The results presented should help direct future inter-instrument
comparisons.Comment: Accepted for publication in Solar Physics. The final publication
(including full-resolution figures) will be available at
http://www.springerlink.co
Making things happen : a model of proactive motivation
Being proactive is about making things happen, anticipating and preventing problems, and seizing opportunities. It involves self-initiated efforts to bring about change in the work environment and/or oneself to achieve a different future. The authors develop existing perspectives on this topic by identifying proactivity as a goal-driven process involving both the setting of a proactive goal (proactive goal generation) and striving to achieve that proactive goal (proactive goal striving). The authors identify a range of proactive goals that individuals can pursue in organizations. These vary on two dimensions: the future they aim to bring about (achieving a better personal fit within oneâs work environment, improving the organizationâs internal functioning, or enhancing the organizationâs strategic fit with its environment) and whether the self or situation is being changed. The authors then identify âcan do,â âreason to,â and âenergized toâ motivational states that prompt proactive goal generation and sustain goal striving. Can do motivation arises from perceptions of self-efficacy, control, and (low) cost. Reason to motivation relates to why someone is proactive, including reasons flowing from intrinsic, integrated, and identified motivation. Energized to motivation refers to activated positive affective states that prompt proactive goal processes. The authors suggest more distal antecedents, including individual differences (e.g., personality, values, knowledge and ability) as well as contextual variations in leadership, work design, and interpersonal climate, that influence the proactive motivational states and thereby boost or inhibit proactive goal processes. Finally, the authors summarize priorities for future researc
Brain connectivity using geodesics in HARDI
International audienceWe develop an algorithm for brain connectivity assessment using geodesics in HARDI (high angular resolution diffusion imaging). We propose to recast the problem of finding fibers bundles and connectivity maps to the calculation of shortest paths on a Riemannian manifold defined from fiber ODFs computed from HARDI measurements. Several experiments on real data show that out method is able to segment fibers bundles that are not easily recovered by other existing methods
Active region formation through the negative effective magnetic pressure instability
The negative effective magnetic pressure instability operates on scales
encompassing many turbulent eddies and is here discussed in connection with the
formation of active regions near the surface layers of the Sun. This
instability is related to the negative contribution of turbulence to the mean
magnetic pressure that causes the formation of large-scale magnetic structures.
For an isothermal layer, direct numerical simulations and mean-field
simulations of this phenomenon are shown to agree in many details in that their
onset occurs at the same depth. This depth increases with increasing field
strength, such that the maximum growth rate of this instability is independent
of the field strength, provided the magnetic structures are fully contained
within the domain. A linear stability analysis is shown to support this
finding. The instability also leads to a redistribution of turbulent intensity
and gas pressure that could provide direct observational signatures.Comment: 19 pages, 10 figures, submitted to Solar Physic
The Relationship Between Plasma Flow Doppler Velocities and Magnetic Field Parameters During the Emergence of Active Regions at the Solar Photospheric Level
A statistical study has been carried out of the relationship between plasma
flow Doppler velocities and magnetic field parameters during the emergence of
active regions at the solar photospheric level with data acquired by the
Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory
(SOHO). We have investigated 224 emerging active regions with different spatial
scales and positions on the solar disc. The following relationships for the
first hours of the emergence of active regions have been analysed: i) of peak
negative Doppler velocities with the position of the emerging active regions on
the solar disc; ii) of peak plasma upflow and downflow Doppler velocities with
the magnetic flux growth rate and magnetic field strength for the active
regions emerging near the solar disc centre (the vertical component of plasma
flows); iii) of peak positive and negative Doppler velocities with the magnetic
flux growth rate and magnetic field strength for the active regions emerging
near the limb (the horizontal component of plasma flows); iv) of the magnetic
flux growth rate with the density of emerging magnetic flux; v) of the Doppler
velocities and magnetic field parameters for the first hours of the appearance
of active regions with the total unsigned magnetic flux at the maximum of their
development.Comment: 14 pages, 8 figures. The results of article were presented at the
ESPM-13 (12-16 September 2011, Rhodes, Greece, Abstract Book p. 102-103,
P.4.13,
http://astro.academyofathens.gr/espm13/documents/ESPM13_abstract_programme_book.pdf
Erratum to: Search for diboson resonances in hadronic final states in 139 fbâ1 of pp collisions at sâ = 13 TeV with the ATLAS detector
A mistake was identified for the paper [1] in the treatment of the radion [2] cross-sections, which resulted in multiple changes.(undefined)info:eu-repo/semantics/publishedVersio
- âŠ