333 research outputs found
Experimental transonic flutter characteristics of two 72 deg-sweep delta-wing models
Transonic flutter boundaries are presented for two simple, 72 deg. sweep, low-aspect-ratio wing models. One model was an aspect-ratio 0.65 delta wing; the other model was an aspect-ratio 0.54 clipped-delta wing. Flutter boundaries for the delta wing are presented for the Mach number range of 0.56 to 1.22. Flutter boundaries for the clipped-delta wing are presented for the Mach number range of 0.72 to 0.95. Selected vibration characteristics of the models are also presented
Recommended from our members
Climate Change and San Francisco Bay-Delta Tidal Wetlands
Climate change will affect tidal wetlands with higher rates of sea-level rise and higher concentrations of salt in brackish and freshwater tidal systems, in addition to causing increases in atmospheric CO2 concentration, warmer temperatures, and shifts in precipitation. In the San Francisco Bay–Delta, the areas most likely to be affected—brackish and freshwater tidal wetlands—are also the sites with the majority of endemic plant species and the greater biodiversity and productivity. Effects on the San Francisco Bay– Delta estuary are complex and difficult to predict, but a few things are clear. Biodiversity of the tidal wetland system in the San Francisco Bay–Delta region will decline, with subsequent effects on ecosystem functioning and services. Altered plant production, physiological tolerances, and shifts in rates of mortality will modify wetland plant communities in ways not yet predictable. Lower ecosystem productivity from salinity increases will affect both primary and detrital-based food webs. Such changes will cascade via the food webs into invertebrate, bird, and pelagic systems. Tidal wetlands are especially sensitive to processes that climate change will alter. Several of these altered processes are exacerbated by water diversions from the Delta
Fragmentation Instability of Molecular Clouds: Numerical Simulations
We simulate fragmentation and gravitational collapse of cold, magnetized
molecular clouds. We explore the nonlinear development of an instability
mediated by ambipolar diffusion, in which the collapse rate is intermediate to
fast gravitational collapse and slow quasistatic collapse. Initially uniform
stable clouds fragment into elongated clumps with masses largely determined by
the cloud temperature, but substantially larger than the thermal Jeans mass.
The clumps are asymmetric, with significant rotation and vorticity, and lose
magnetic flux as they collapse. The clump shapes, intermediate collapse rates,
and infall profiles may help explain observations not easily fit by
contemporary slow or rapid collapse models.Comment: 25pp, 20 small eps figures, in press ApJ, April 1, 200
Parametric flutter studies of an arrow-wing configuration: Some early results
Some early experimental results from a combined experimental and analytical study being conducted at NASA-Langley of the transonic flutter characterisitics of a generic arrow wing configuration are presented. The planned study includes the parametric variation of a variety of structural and geometric characteristics. Presented here are flutter results of the basic arrow wing, for the basic wing with the addition of two simulated lower-surface-mounted engine nacelles, and for the basic wing with the addition of both the fin and the engine nacelles
Lymphocyte Cc Chemokine Receptor 9 and Epithelial Thymus-Expressed Chemokine (Teck) Expression Distinguish the Small Intestinal Immune Compartment: Epithelial Expression of Tissue-Specific Chemokines as an Organizing Principle in Regional Immunity
The immune system has evolved specialized cellular and molecular mechanisms for targeting and regulating immune responses at epithelial surfaces. Here we show that small intestinal intraepithelial lymphocytes and lamina propria lymphocytes migrate to thymus-expressed chemokine (TECK). This attraction is mediated by CC chemokine receptor (CCR)9, a chemoattractant receptor expressed at high levels by essentially all CD4+ and CD8+ T lymphocytes in the small intestine. Only a small subset of lymphocytes in the colon are CCR9+, and lymphocytes from other tissues including tonsils, lung, inflamed liver, normal or inflamed skin, inflamed synovium and synovial fluid, breast milk, and seminal fluid are universally CCR9−. TECK expression is also restricted to the small intestine: immunohistochemistry reveals that intense anti-TECK reactivity characterizes crypt epithelium in the jejunum and ileum, but not in other epithelia of the digestive tract (including stomach and colon), skin, lung, or salivary gland. These results imply a restricted role for lymphocyte CCR9 and its ligand TECK in the small intestine, and provide the first evidence for distinctive mechanisms of lymphocyte recruitment that may permit functional specialization of immune responses in different segments of the gastrointestinal tract. Selective expression of chemokines by differentiated epithelium may represent an important mechanism for targeting and specialization of immune responses
Home monitoring of breathing rate in people with chronic obstructive pulmonary disease: observational study of feasibility, acceptability, and change after exacerbation
Abstract: Telehealth programs to promote early identification and timely self-management of acute exacerbations of chronic obstructive pulmonary diseases (AECOPDs) have yielded disappointing results, in part, because parameters monitored (symptoms, pulse oximetry, and spirometry) are weak predictors of exacerbations.Purpose: Breathing rate (BR) rises during AECOPD and may be a promising predictor. Devices suitable for home use to measure BR have recently become available, but their accuracy, acceptability, and ability to detect changes in people with COPD is not known.Patients and methods: We compared five BR monitors, which used different monitoring technologies, with a gold standard (Oxycon Mobile®; CareFusion®, a subsidiary of Becton Dickinson, San Diego, CA, USA). The monitors were validated in 21 stable COPD patients during a 57-min “activities of daily living protocol” in a laboratory setting. The two best performing monitors were then tested in a 14-day trial in a home setting in 23 stable COPD patients to determine patient acceptability and reliability of signal. Acceptability was explored in qualitative interviews. The better performing monitor was then given to 18 patients recruited during an AECOPD who wore the monitor to observe BR during the recovery phase of an AECOPD.Results: While two monitors demonstrated acceptable accuracy compared with the gold standard, some participants found them intrusive particularly when ill with an exacerbation, limiting their potential utility in acute situations. A reduction in resting BR during the recovery from an AECOPD was observed in some, but not in all participants and there was considerable day-to-day individual variation.Conclusion: Resting BR shows some promise in identifying exacerbations; however, further prospective study to assess this is required.Keywords: COPD exacerbation, telemedicine, COPD management, heart rat
On the Origin of Cosmic Magnetic Fields
We review the literature concerning how the cosmic magnetic fields pervading
nearly all galaxies actually got started. some observational evidence involves
the chemical abundance of the light elements Be and B, while another one is
based on strong magnetic fields seen in high red shift galaxies. Seed fields,
whose strength is of order 10^{-20} gauss, easily sprung up in the era
preceding galaxy formation. Several mechanisms are proposed to amplify these
seed fields to microgauss strengths. The standard mechanism is the Alpha-Omega
dynamo theory. It has a major difficulty that makes unlikely to provide the
sole origin. The difficulty is rooted in the fact that the total flux is
constant. This implies that flux must be removed from the galactic discs. This
requires that the field and flux be separated, for otherwise interstellar mass
must be removed from the deep galactic gravitational and then their strength
increased by the alpha omega theory.Comment: 90 pages and 6 figures; accepted for publication in Reports of
Progress in Physics as an invited revie
Application of Mixed Effects Limits of Agreement in the Presence of Multiple Sources of Variability: Exemplar from the Comparison of Several Devices to Measure Respiratory Rate in COPD Patients
IntroductionThe Bland-Altman limits of agreement method is widely used to assess how well the measurements produced by two raters, devices or systems agree with each other. However, mixed effects versions of the method which take into account multiple sources of variability are less well described in the literature. We address the practical challenges of applying mixed effects limits of agreement to the comparison of several devices to measure respiratory rate in patients with chronic obstructive pulmonary disease (COPD). MethodsRespiratory rate was measured in 21 people with a range of severity of COPD. Participants were asked to perform eleven different activities representative of daily life during a laboratory-based standardised protocol of 57 minutes. A mixed effects limits of agreement method was used to assess the agreement of five commercially available monitors (Camera, Photoplethysmography (PPG), Impedance, Accelerometer, and Chest-band) with the current gold standard device for measuring respiratory rate. ResultsResults produced using mixed effects limits of agreement were compared to results from a fixed effects method based on analysis of variance (ANOVA) and were found to be similar. The Accelerometer and Chest-band devices produced the narrowest limits of agreement (-8.63 to 4.27 and -9.99 to 6.80 respectively) with mean bias -2.18 and -1.60 breaths per minute. These devices also had the lowest within-participant and overall standard deviations (3.23 and 3.29 for Accelerometer and 4.17 and 4.28 for Chest-band respectively). ConclusionsThe mixed effects limits of agreement analysis enabled us to answer the question of which devices showed the strongest agreement with the gold standard device with respect to measuring respiratory rates. In particular, the estimated within-participant and overall standard deviations of the differences, which are easily obtainable from the mixed effects model results, gave a clear indication that the Accelerometer and Chest-band devices performed best
- …