37,980 research outputs found
Particle creation in a Robertson-Walker Universe revisited
We reanalyze the problem of particle creation in a 3+1 spatially closed
Robertson-Walker space-time. We compute the total number of particles produced
by this non-stationary gravitational background as well as the corresponding
total energy and find a slight discrepancy between our results and those
recently obtained in the literatur
Terrace grading of SiGe for high-quality virtual substrates
Silicon germanium (SiGe) virtual substrates of final germanium composition x = 0.50 have been fabricated using solid-source molecular beam epitaxy with a thickness of 2 ”m. A layer structure that helps limit the size of dislocation pileups associated with the modified FrankâRead dislocation multiplication mechanism has been studied. It is shown that this structure can produce lower threading dislocation densities than conventional linearly graded virtual substrates. Cross-sectional transmission electron microscopy shows the superior quality of the dislocation network in the graded regions with a lower rms roughness shown by atomic force microscopy. X-ray diffractometry shows these layers to be highly relaxed. This method of Ge grading suggests that high-quality virtual substrates can be grown considerably thinner than with conventional grading methods
Instability of Rotationally Tuned Dipolar Bose-Einstein Condensates
The possibility of effectively inverting the sign of the dipole-dipole
interaction, by fast rotation of the dipole polarization, is examined within a
harmonically trapped dipolar Bose-Einstein condensate. Our analysis is based on
the stationary states in the Thomas-Fermi limit, in the corotating frame, as
well as direct numerical simulations in the Thomas-Fermi regime, explicitly
accounting for the rotating polarization. The condensate is found to be
inherently unstable due to the dynamical instability of collective modes. This
ultimately prevents the realization of robust and long-lived rotationally tuned
states. Our findings have major implications for experimentally accessing this
regime.Comment: 9 pages with 5 figure
MOS field-effect-transistor technology
Metal oxide semiconductor field effect transistor circuit development and laminated electronic packaging for computer storage device
Extremely high room-temperature two-dimensional hole gas mobility in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures
To extract the room-temperature drift mobility and sheet carrier density of two-dimensional hole gas (2DHG) that form in Ge strained channels of various thicknesses in Ge/Si0.33Ge0.67/Si(001) p-type modulation-doped heterostructures, the magnetic field dependences of the magnetoresistance and Hall resistance at temperature of 295 K were measured and the technique of maximum entropy mobility spectrum analysis was applied. This technique allows a unique determination of mobility and sheet carrier density of each group of carriers present in parallel conducting multilayers semiconductor heterostructures. Extremely high room-temperature drift mobility (at sheet carrier density) of 2DHG 2940 cm2 Vâ1 sâ1 (5.11Ă1011 cmâ2) was obtained in a sample with a 20 nm thick Ge strained channel
Inelastic neutron scattering studies of methyl chloride synthesis over alumina
Not only is alumina the most widely used catalyst support material in the world, it is also an important catalyst in its own right. One major chemical process that uses alumina in this respect is the industrial production of methyl chloride. This is a large scale process (650â000 metric tons in 2010 in the United States), and a key feedstock in the production of silicones that are widely used as household sealants. In this Account, we show how, in partnership with conventional spectroscopic and reaction testing methods, inelastic neutron scattering (INS) spectroscopy can provide additional insight into the active sites present on the catalyst, as well as the intermediates present on the catalyst surface.<p></p>
INS spectroscopy is a form of vibrational spectroscopy, where the spectral features are dominated by modes involving hydrogen. Because of this, most materials including alumina are largely transparent to neutrons. Advantageously, in this technique, the entire âmid-infraredâ, 0â4000 cm<sup>â1</sup>, range is accessible; there is no cut-off at 1400 cm<sup>â1</sup> as in infrared spectroscopy. It is also straightforward to distinguish fundamental modes from overtones and combinations. <p></p>
A key parameter in the catalystâs activity is the surface acidity. In infrared spectroscopy of adsorbed pyridine, the shifts in the ring stretching modes are dependent on the strength of the acid site. However, there is a very limited spectral range available. We discuss how we can observe the low energy ring deformation modes of adsorbed pyridine by INS spectroscopy. These modes can undergo shifts that are as large as those seen with infrared inspectroscopy, potentially enabling finer discrimination between acid sites. <p></p>
Surface hydroxyls play a key role in alumina catalysis, but in infrared spectroscopy, the presence of electrical anharmonicity complicates the interpretation of the OâH stretch region. In addition, the deformations lie below the infrared cut-off. Both of these limitations are irrelevant to INS spectroscopy, and all the modes are readily observable. When we add HCl to the catalyst surface, the acid causes changes in the spectra. We can then deduce both that the surface chlorination leads to enhanced Lewis acidity and that the hydroxyl group must be threefold coordinated. <p></p>
When we react η-alumina with methanol, the catalyst forms a chemisorbed methoxy species. Infrared spectroscopy clearly shows its presence but also indicates the possible coexistence of a second species. Because of INS spectroscopyâs ability to discriminate between fundamental modes and combinations, we were able to unambiguously show that there is a single intermediate present on the surface of the active catalyst. This work represents a clear example where an understanding of the chemistry at the molecular level can help rationalize improvements in a large scale industrial process with both financial and environmental benefits. <p></p>
Growth studies on Si0.8Ge0.2 channel two-dimensional hole gases
We report a study of the influences of MBE conditions on the low-temperature mobilities of Si/Si0.8Ge0.2 2DHG structures. A significant dependence of 2DHG mobility on growth temperature is observed with the maximum mobility of 3640 cm2 Vâ1 sâ1 at 5.4 K being achieved at the relatively high-growth temperature of 640 °C. This dependence is associated with a reduction in interface charge density. Studies on lower mobility samples show that Cu contamination can be reduced both by growth interruptions and by modifications to the Ge source; this reduction produces improvements in the low-temperature mobilities. We suggest that interface charge deriving from residual metal contamination is currently limiting the 4-K mobility
- âŠ