34,545 research outputs found

    Metal (2) 4,4',4",4'" phthalocyanine tetraamines as curing agents for epoxy resins

    Get PDF
    Metal, preferably divalent copper, cobalt or nickel, phthalocyanine tetraamines are used as curing agents for epoxides. The resulting copolymers have high thermal and chemical resistance and are homogeneous. They are useful as binders for laminates, e.g., graphite cloth laminate

    Metal phthalocyanine intermediates for the preparation of polymers

    Get PDF
    Metal 4, 4', 4"",-tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A

    Metal phthalocyanine polymers

    Get PDF
    Metal 4, 4', 4", 4"'=tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A

    Instability of Rotationally Tuned Dipolar Bose-Einstein Condensates

    Get PDF
    The possibility of effectively inverting the sign of the dipole-dipole interaction, by fast rotation of the dipole polarization, is examined within a harmonically trapped dipolar Bose-Einstein condensate. Our analysis is based on the stationary states in the Thomas-Fermi limit, in the corotating frame, as well as direct numerical simulations in the Thomas-Fermi regime, explicitly accounting for the rotating polarization. The condensate is found to be inherently unstable due to the dynamical instability of collective modes. This ultimately prevents the realization of robust and long-lived rotationally tuned states. Our findings have major implications for experimentally accessing this regime.Comment: 9 pages with 5 figure

    Observing collapse in two colliding dipolar Bose-Einstein condensates

    Full text link
    We study the collision of two Bose-Einstein condensates with pure dipolar interaction. A stationary pure dipolar condensate is known to be stable when the atom number is below a critical value. However, collapse can occur during the collision between two condensates due to local density fluctuations even if the total atom number is only a fraction of the critical value. Using full three-dimensional numerical simulations, we observe the collapse induced by local density fluctuations. For the purpose of future experiments, we present the time dependence of the density distribution, energy per particle and the maximal density of the condensate. We also discuss the collapse time as a function of the relative phase between the two condensates.Comment: 6 pages, 7 figure

    Spatial curvature effects on molecular transport by diffusion

    Full text link
    For a substance diffusing on a curved surface, we obtain an explicit relation valid for very small values of the time, between the local concentration, the diffusion coefficient, the intrinsic spatial curvature and the time. We recover the known solution of Fick's law of diffusion in the flat space limit. In the biological context, this result would be useful in understanding the variations in the diffusion rates of integral proteins and other molecules on membranes.Comment: 10 page

    Effects of Line-tying on Magnetohydrodynamic Instabilities and Current Sheet Formation

    Full text link
    An overview of some recent progress on magnetohydrodynamic stability and current sheet formation in a line-tied system is given. Key results on the linear stability of the ideal internal kink mode and resistive tearing mode are summarized. For nonlinear problems, a counterexample to the recent demonstration of current sheet formation by Low \emph{et al}. [B. C. Low and \AA. M. Janse, Astrophys. J. \textbf{696}, 821 (2009)] is presented, and the governing equations for quasi-static evolution of a boundary driven, line-tied magnetic field are derived. Some open questions and possible strategies to resolve them are discussed.Comment: To appear in Phys. Plasma
    corecore