53,196 research outputs found

    Shuttle rocket booster computational fluid dynamics

    Get PDF
    Additional results and a revised and improved computer program listing from the shuttle rocket booster computational fluid dynamics formulations are presented. Numerical calculations for the flame zone of solid propellants are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges

    Development of a computerized analysis for solid propellant combustion instability with turbulence

    Get PDF
    A multi-dimensional numerical model has been developed for the unsteady state oscillatory combustion of solid propellants subject to acoustic pressure disturbances. Including the gas phase unsteady effects, the assumption of uniform pressure across the flame zone, which has been conventionally used, is relaxed so that a higher frequency response in the long flame of a double-base propellant can be calculated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition with no condensed phase reaction. In a given geometry, the Galerkin finite element solution shows the strong resonance and damping effect at the lower frequencies, similar to the result of Denison and Baum. Extended studies deal with the higher frequency region where the pressure varies in the flame thickness. The nonlinear system behavior is investigated by carrying out the second order expansion in wave amplitude when the acoustic pressure oscillations are finite in amplitude. Offset in the burning rate shows a negative sign in the whole frequency region considered, and it verifies the experimental results of Price. Finally, the velocity coupling in the two-dimensional model is discussed

    Observational constraints on a unified dark matter and dark energy model based on generalized Chaplygin gas

    Full text link
    We study a generalized version of Chaplygin gas as unified model of dark matter and dark energy. Using realistic theoretical models and the currently available observational data from the age of the universe, the expansion history based on the type Ia supernovae, the matter power spectrum, the cosmic microwave background radiation anisotropy power spectra, and the perturbation growth factor we put the unified model under observational test. As the model has only two free parameters in the flat Friedmann background [Λ\LambdaCDM (cold dark matter) model has only one free parameter] we show that the model is already tightly constrained by currently available observations. The only parameter space extremely close to the Λ\LambdaCDM model is allowed in this unified model.Comment: 7 pages, 9 figure

    Critical phenomena in exponential random graphs

    Full text link
    The exponential family of random graphs is one of the most promising class of network models. Dependence between the random edges is defined through certain finite subgraphs, analogous to the use of potential energy to provide dependence between particle states in a grand canonical ensemble of statistical physics. By adjusting the specific values of these subgraph densities, one can analyze the influence of various local features on the global structure of the network. Loosely put, a phase transition occurs when a singularity arises in the limiting free energy density, as it is the generating function for the limiting expectations of all thermodynamic observables. We derive the full phase diagram for a large family of 3-parameter exponential random graph models with attraction and show that they all consist of a first order surface phase transition bordered by a second order critical curve.Comment: 14 pages, 8 figure

    FCNC and CP Violation Observables in a SU(3)-flavoured MSSM

    Get PDF
    A non-Abelian flavour symmetry in a minimal supersymmetric standard model can explain the flavour structures in the Yukawa couplings and simultaneously solve the SUSY flavour problem. Similarly the SUSY CP problem can be solved if CP is spontaneously broken in the flavour sector. In this work, we present an explicit example of these statements with a SU(3) flavour symmetry and spontaneous CP violation. In addition, we show that it is still possible to find some significant deviation from the SM expectations as far as FCNC and CP violation are concerned. We find that large contributions can be expected in lepton flavour violating decays, as μeγ\mu \to e \gamma and τμγ\tau \to \mu \gamma, electric dipole moments, ded_e and dnd_n and kaon CP violating processes as ϵK\epsilon_K. Thus, these flavoured MSSM realizations are phenomenologically sensitive to the experimental searches in the realm of flavor and CP vioation physics.Comment: 56 pages, 12 figures; included new NLO contributions to nEDM from charged Higgs, relevant figures updated, and analysis of O(1) coefficients; added appendices and reference

    4D visualization of embryonic, structural crystallization by single-pulse microscopy

    Get PDF
    In many physical and biological systems the transition from an amorphous to ordered native structure involves complex energy landscapes, and understanding such transformations requires not only their thermodynamics but also the structural dynamics during the process. Here, we extend our 4D visualization method with electron imaging to include the study of irreversible processes with a single pulse in the same ultrafast electron microscope (UEM) as used before in the single-electron mode for the study of reversible processes. With this augmentation, we report on the transformation of amorphous to crystalline structure with silicon as an example. A single heating pulse was used to initiate crystallization from the amorphous phase while a single packet of electrons imaged selectively in space the transformation as the structure continuously changes with time. From the evolution of crystallinity in real time and the changes in morphology, for nanosecond and femtosecond pulse heating, we describe two types of processes, one that occurs at early time and involves a nondiffusive motion and another that takes place on a longer time scale. Similar mechanisms of two distinct time scales may perhaps be important in biomolecular folding

    Subwavelength localization and toroidal dipole moment of spoof surface plasmon polaritons

    Get PDF
    We experimentally and theoretically demonstrate subwavelength scale localization of spoof surface plasmon polaritons at a point defect in a two-dimensional groove metal array. An analytical expression for dispersion relation of spoof surface plasmon polaritons substantiates the existence of a band gap where a defect mode can be introduced. A waveguide coupling method allows us to excite localized spoof surface plasmon polariton modes and measure their resonance frequencies. Numerical calculations confirm that localized modes can have a very small modal volume and a high Q factor both of which are essential in enhancing light-matter interactions. Interestingly, we find that the localized spoof surface plasmon polariton has a significant toroidal dipole moment, which is responsible for the high Q factor, as well as an electric quadrupole moment. In addition, the dispersion properties of spoof surface plasmon polaritons are analyzed using a modal expansion method and numerical calculations

    Cosmic Mach Number as a Function of Overdensity and Galaxy Age

    Get PDF
    We carry out an extensive study of the cosmic Mach number (\mach) on scales of R=5, 10 and 20h^-1Mpc using an LCDM hydrodynamical simulation. We particularly put emphasis on the environmental dependence of \mach on overdensity, galaxy mass, and galaxy age. We start by discussing the difference in the resulting \mach according to different definitions of \mach and different methods of calculation. The simulated Mach numbers are slightly lower than the linear theory predictions even when a non-linear power spectrum was used in the calculation, reflecting the non-linear evolution in the simulation. We find that the observed \mach is higher than the simulated mean by more than 2-standard deviations, which suggests either that the Local Group is in a relatively low-density region or that the true value of \Omega_m is ~ 0.2, significantly lower than the simulated value of 0.37. We show from our simulation that the Mach number is a weakly decreasing function of overdensity. We also investigate the correlations between galaxy age, overdensity and \mach for two different samples of galaxies --- DWARFs and GIANTs. Older systems cluster in higher density regions with lower \mach, while younger ones tend to reside in lower density regions with larger \mach, as expected from the hierarchical structure formation scenario. However, for DWARFs, the correlation is weakened by the fact that some of the oldest DWARFs are left over in low-density regions during the structure formation history. For giant systems, one expects blue-selected samples to have higher \mach than red-selected ones. We briefly comment on the effect of the warm dark matter on the expected Mach number.Comment: 43 pages, including 15 figures. Accepted version in ApJ. Included correlation function of different samples of galaxies, and the cumulative number fraction distribution as a fcn. of overdensity. Reorganized figures and added some reference

    Correlation Functions of Conserved Currents in N = 2 Superconformal Theory

    Get PDF
    Using a manifestly supersymmetric formalism, we determine the general structure of two- and three- point functions of the supercurrent and the flavour current of N = 2 superconformal field theories. We also express them in terms of N = 1 superfields and compare to the generic N = 1 correlation functions. A general discussion of the N = 2 supercurrent superfield and the multiplet of anomalies and their definition as derivatives with respect to the supergravity prepotentials is also included.Comment: 43 pages, latex, no figures, v.2: section 4.2 extende
    corecore