83 research outputs found

    Enhanced Chromatin Accessibility and Recruitment of JUNB Mediate the Sustained IL-4 Expression in NFAT1 Deficient T Helper 2 Cells

    Get PDF
    Nuclear factor of activated T cells (NFAT) is a family of transcription factors composed of five proteins. Among them, NFAT1 is a predominant NFAT protein in CD4+ T cells. NFAT1 positively regulates transcription of a large number of inducible cytokine genes including IL-2, IL-4, IL-5 and other cytokines. However, disruption of NFAT1 results in an unexpected increase of IL-4. In this study, we have investigated the role of NFAT1 in regulation of IL-4 gene expression in T helper 2 cells (Th2) from an epigenetic viewpoint. NFAT1 deficient Th2 cells showed a sustained IL-4 expression while wild type (WT) cells reduced its expression. We tested whether epigenetic maintenance and changes in the chromatin architecture of IL-4 promoter locus play a role in differential IL-4 transcription between in WT and NFAT1 deficient Th2 cells. Compared with WT, NFAT1 deficient CD4+ Th2 cells exhibited enhanced chromatin accessibility with permissive histone modification and DNA demethylation in the IL-4 promoter region. Transcription factors bound to IL-4 promoter region in the absence of NFAT1 were identified by Micro-LC/LC-MS/MS analysis. Among the candidates, preferential recruitment of JUNB to the IL-4 promoter was confirmed by chromatin immunoprecipitation analysis. Overexpression of JUNB together with SATB1 synergistically upregulated IL-4 promoter activity, while knockdown JUNB significantly reduced IL-4 expression. Our results suggest that the prolonged IL-4 expression in NFAT1 deficient Th2 cells is mediated by preferential binding of JUNB/SATB1 to the IL-4 promoter with permissive chromatin architecture

    Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    Get PDF
    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins

    Quaternary structures of Vac8 differentially regulate the Cvt and PMN pathways.

    Get PDF
    Armadillo (ARM) repeat proteins constitute a large protein family with diverse and fundamental functions in all organisms, and armadillo repeat domains share high structural similarity. However, exactly how these structurally similar proteins can mediate diverse functions remains a long-standing question. Vac8 (vacuole related 8) is a multifunctional protein that plays pivotal roles in various autophagic pathways, including piecemeal microautophagy of the nucleus (PMN) and cytoplasm-to-vacuole targeting (Cvt) pathways in the budding yeast Saccharomyces cerevisiae. Vac8 comprises an H1 helix at the N terminus, followed by 12 armadillo repeats. Herein, we report the crystal structure of Vac8 bound to Atg13, a key component of autophagic machinery. The 70-angstrom extended loop of Atg13 binds to the ARM domain of Vac8 in an antiparallel manner. Structural, biochemical, and in vivo experiments demonstrated that the H1 helix of Vac8 intramolecularly associates with the first ARM and regulates its self-association, which is crucial for Cvt and PMN pathways. The structure of H1 helix-deleted Vac8 complexed with Atg13 reveals that Vac8[Delta 19-33]-Atg13 forms a heterotetramer and adopts an extended superhelical structure exclusively employed in the Cvt pathway. Most importantly, comparison of Vac8-Nvj1 and Vac8-Atg13 provides a molecular understanding of how a single ARM domain protein adopts different quaternary structures depending on its associated proteins to differentially regulate 2 closely related but distinct cellular pathways

    The Mechanism of Membrane Targeting of Human Sphingosine Kinase 1

    Get PDF
    Sphingosine 1-phosphate is a bioactive sphingolipid that regu- lates cell growth and suppresses programmed cell death. The bio- synthesis of sphingosine 1-phosphate is catalyzed by sphingosine kinase (SK) but the mechanism by which the subcellular localization and activity of SK is regulated in response to various stimuli is not fully understood. To elucidate the origin and structural determi- nant of the specific subcellular localization of SK, we performed biophysical and cell studies of human SK1 (hSK1) and selected mutants. In vitro measurements showed that hSK1 selectively bound phosphatidylserine over other anionic phospholipids and strongly preferred the plasma membrane-mimicking membrane to other cellular membrane mimetics. Mutational analysis indicates that conserved Thr54 and Asn89 in the putative membrane-binding surface are essential for lipid selectivity and membrane targeting both in vitro and in the cell. Also, phosphorylation of Ser225 enhances the membrane affinity and plasma membrane selectivity of hSK1, presumably by modulating the interaction of Thr54 and Asn89 with the membrane. Collectively, these studies suggest that the specific plasma membrane localization and activation of SK1 is mediated largely by specific lipid-protein interactions

    Regulation of cell migration and survival by focal adhesion targeting of Lasp-1

    Get PDF
    Large-scale proteomic and functional analysis of isolated pseudopodia revealed the Lim, actin, and SH3 domain protein (Lasp-1) as a novel protein necessary for cell migration, but not adhesion to, the extracellular matrix (ECM). Lasp-1 is a ubiquitously expressed actin-binding protein with a unique domain configuration containing SH3 and LIM domains, and is overexpressed in 8–12% of human breast cancers. We find that stimulation of nonmotile and quiescent cells with growth factors or ECM proteins facilitates Lasp-1 relocalization from the cell periphery to the leading edge of the pseudopodium, where it associates with nascent focal complexes and areas of actin polymerization. Interestingly, although Lasp-1 dynamics in migratory cells occur independently of c-Abl kinase activity and tyrosine phosphorylation, c-Abl activation by apoptotic agents specifically promotes phosphorylation of Lasp-1 at tyrosine 171, which is associated with the loss of Lasp-1 localization to focal adhesions and induction of cell death. Thus, Lasp-1 is a dynamic focal adhesion protein necessary for cell migration and survival in response to growth factors and ECM proteins

    O-GlcNAc modulation at Akt1 Ser473 correlates with apoptosis of murine pancreatic β cells

    Get PDF
    O-GlcNAc transferase (OGT)-mediated modification of protein Ser/Thr residues withO-GlcNAc influences protein activity, similar to the effects of phosphorylation. The anti-apoptotic Akt1 is both activated by phosphorylation and modified with O-GlcNAc. However, the nature and significance of the Akt1 O-GlcNAc modification is unknown. The relationship of O-GlcNAc modification and phosphorylation at Akt1 Ser473 was examined with respect to apoptosis of murine β-pancreatic cells. Glucosamine treatment induced apoptosis, which correlated with enhanced O-GlcNAc modification of Akt1 and concomitant reduction in Ser473 phosphorylation. Pharmacological inhibition of OGT or O-GlcNAcase revealed an inverse correlation between O-GlcNAcmodification and Ser473 phosphorylation of Akt1. MALDI-TOF/TOFmass spectrometry analysis of Akt1 immunoprecipitates fromglucosamine-treated cells, but not untreated controls, showed a peptide containing S473/T479 that was presumably modified withO-GlcNAc. Furthermore, in vitroO-GlcNAc-modification analysis of wildtype and mutant Akt1 revealed that S473 was targeted by recombinant OGT. A S473A Akt1 mutant demonstrated reduced basal and glucosamine-induced Akt1 O-GlcNAc modification compared with wildtype Akt1. Furthermore, wildtype Akt1, but not the S473A mutant, appeared to be associated with OGT following glucosamine treatment. Together, these observations suggest that Akt1 Ser473 may undergo both phosphorylation and O-GlcNAc modification, and the balance between these may regulatemurine β-pancreatic cell fate

    Cinnamon extract induces tumor cell death through inhibition of NFκB and AP1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Cinnamomum cassia </it>bark is the outer skin of an evergreen tall tree belonging to the family Lauraceae containing several active components such as essential oils (cinnamic aldehyde and cinnamyl aldehyde), tannin, mucus and carbohydrate. They have various biological functions including anti-oxidant, anti-microbial, anti-inflammation, anti-diabetic and anti-tumor activity. Previously, we have reported that anti-cancer effect of cinnamon extracts is associated with modulation of angiogenesis and effector function of CD8<sup>+ </sup>T cells. In this study, we further identified that anti-tumor effect of cinnamon extracts is also link with enhanced pro-apoptotic activity by inhibiting the activities NFκB and AP1 in mouse melanoma model.</p> <p>Methods</p> <p>Water soluble cinnamon extract was obtained and quality of cinnamon extract was evaluated by HPLC (High Performance Liquid Chromatography) analysis. In this study, we tested anti-tumor activity and elucidated action mechanism of cinnamon extract using various types of tumor cell lines including lymphoma, melanoma, cervix cancer and colorectal cancer <it>in vitro </it>and <it>in vivo </it>mouse melanoma model.</p> <p>Results</p> <p>Cinnamon extract strongly inhibited tumor cell proliferation <it>in vitro </it>and induced active cell death of tumor cells by up-regulating pro-apoptotic molecules while inhibiting NFκB and AP1 activity and their target genes such as <it>Bcl-2</it>, <it>BcL-xL </it>and <it>survivin</it>. Oral administration of cinnamon extract in melanoma transplantation model significantly inhibited tumor growth with the same mechanism of action observed <it>in vitro</it>.</p> <p>Conclusion</p> <p>Our study suggests that anti-tumor effect of cinnamon extracts is directly linked with enhanced pro-apoptotic activity and inhibition of NFκB and AP1 activities and their target genes <it>in vitro </it>and <it>in vivo </it>mouse melanoma model. Hence, further elucidation of active components of cinnamon extract could lead to development of potent anti-tumor agent or complementary and alternative medicine for the treatment of diverse cancers.</p
    corecore