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Abstract 

 O-GlcNAc transferase (OGT)-mediated modification of protein Ser/Thr residues 

with O-GlcNAc influences protein activity, similar to the effects of phosphorylation.  

The anti-apoptotic Akt1 is both activated by phosphorylation and modified with O-

GlcNAc.  However, the nature and significance of the Akt1 O-GlcNAc modification is 

unknown.  The relationship of O-GlcNAc modification and phosphorylation at Akt1 

Ser473 was examined with respect to apoptosis of murine β-pancreatic cells.  

Glucosamine treatment induced apoptosis, which correlated with enhanced O-GlcNAc 

modification of Akt1 and concomitant reduction in Ser473 phosphorylation.  

Pharmacological inhibition of OGT or O-GlcNAcase revealed an inverse correlation 

between O-GlcNAc modification and Ser473 phosphorylation of Akt1.  MALDI-

TOF/TOF mass spectrometry analysis of Akt1 immunoprecipitates from glucosamine-

treated cells, but not untreated controls, showed a peptide containing S473/T479 that 

was presumably modified with O-GlcNAc.  Furthermore, in vitro O-GlcNAc-

modification analysis of wildtype and mutant Akt1 revealed that S473 was targeted by 

recombinant OGT.  A S473A Akt1 mutant demonstrated reduced basal and 

glucosamine-induced Akt1 O-GlcNAc modification compared with wildtype Akt1.  

Furthermore, wildtype Akt1, but not the S473A mutant, appeared to be associated with 
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OGT following glucosamine treatment.  Together, these observations suggest that 

Akt1 Ser473 may undergo both phosphorylation and O-GlcNAc modification, and the 

balance between these may regulate murine β-pancreatic cell fate. 
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glycosylation. 

Abbreviation lists: Alloxan, 1,3-Diazinane-2,4,5,6-tetrone; BADGP, benzyl-2-

acetamido-2-deoxy-α-D-galactopyranoside; GlcN, glucosamine; HBP, hexosamine 

biosynthesis pathway; HEPES, N-2-Hydroxyethylpiperazine-N’-2-ethanesulfonic acid; 

INS-1, insulinoma cell line isolated from rat pancreas; ncOGT, nucleocytoplasmic 

OGT; NTA, nitroloacetic acid; O-GlcNAc, O-linked N-acetylglucosamine; O-

GlcNAcase, O-GlcNAc-selective N-acetyl-β-D-glucosaminidase; OGT, O-GlcNAc 

transferase; PUGNAc, O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino-N-

phenylcarbamate. 



 4

Introduction 

 In contrast to N-linked glycosylation of membrane or secreted proteins, attachment 

of the monosaccharide of O-linked N-acetylglucosamine (O-GlcNAc) to Ser and/or Thr 

residues occurs mainly on nuclear and cytosolic proteins [1, 2].  The O-GlcNAc 

modification is dynamically catalyzed by O-GlcNAc transferase (OGT) [3] and 

removal of O-GlcNAc is achieved by O-GlcNAc-selective N-acetyl-β-D-

glucosaminidase (O-GlcNAcase) [4].  O-GlcNAc modification of Ser/Thr residue(s) 

on a specific protein can modulate the activity of that molecule to the extent of 

ultimately regulating cell function or behavior [2, 4]. 

 Many studies have indicated that activation of hexosamine biosynthesis pathway 

(HBP), which serves as a nutrient sensor, can lead to abnormalities in protein O-

GlcNAc modification that may be associated with insulin resistance and diabetic 

complications [5].  When physiological changes in extracellular glucose 

concentrations are detected by β-pancreatic cells that are uniquely enriched with OGT 

[6], glucose is converted to glucose-6-phosphate and then to fructose-6-phosphate [7].  

The rate-limiting conversion of fructose-6-phosphate to glucosamine-6-phosphate is 

mediated by L-glutamine:fructose-6-phosphate amidotransferase (GFAT) [8].  

Glucosamine-6-phosphate can subsequently be converted to UDP-N-acetylglucosamine 



 5

(UDP-GlcNAc), the requisite substrate for O-GlcNAc modification of many different 

proteins [9].  Therefore, an enhanced glucose flux through the HBP can increase O-

GlcNAc-modification of proteins in response to nutrient levels.  Intracellular 

accumulation of O-GlcNAc-modified proteins can also be achieved by inhibition of O-

GlcNAcase [4]. 

 Patients with type II diabetes are characterized by reduced secretion of insulin by β-

pancreatic cells in response to hyperglycemia combined with impaired ability of 

skeletal muscle, fat and liver cells to respond to insulin [10].  The failure of β-cells to 

compensate for the insulin demand results from reduced β-cell mass through their 

necrosis and apoptosis [11].  Thus, a loss in pancreatic β-cell mass may intensify the 

functional defects, and cause further impairment of the aberrant insulin secretion 

observed in inefficiently controlled diabetes [12].  O-GlcNAc modification of certain 

proteins is known to be associated with β-cell apoptosis in hyperglycemic conditions 

[11]. 

 The anti-apoptotic protein Akt1 is activated by phosphorylation [13]; specifically, 

phosphorylation at Thr308 and Ser473 is required for full Akt1 activity [14].  Akt1 in 

turn phosphorylates diverse downstream molecules including caspase 3, Bad, forkhead 

transcription factor (FOXO family), and GSK3β, inhibiting their pro-apoptotic 
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activities and promoting cell survival [14].  Interestingly, the phosphorylation level of 

Ser473 is modulated by hyperglycemic conditions [12], and Akt1 may also be modified 

with O-GlcNAc [15].  However, it is currently not clear which Ser/Thr residue(s) of 

Akt1 are O-GlcNAc-modified and how the O-GlcNAc modification is related to its 

phosphorylation.  Results of this study indicate that Akt1 Ser473 may be modified 

with O-GlcNAc, and that O-GlcNAc modification and phosphorylation of Ser473 are 

reciprocally regulated by hyperglycemic treatment in murine β-pancreatic cells. 
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Materials and Methods 

Cell cultures: βTC-6 (ATCC), an insulinoma cell line isolated from mouse pancreas, 

was grown in RPMI-1640 containing 10% FBS (WelGENE, Daegu, Korea) in 5% CO2 

at 37oC.  INS-1, an insulinoma cell line isolated from rat pancreas, was grown in 

RPMI-1640 culture medium containing 10% FBS, 1 mM sodium pyruvate, 10 mM 

HEPES and 50 μM 2-mercaptoethanol in 5% CO2 at 37oC.  INS-1 cells that stably 

express human nucleocytoplasmic OGT (ncOGT) were prepared by transfection with 

mammalian ncOGT plasmid (Gene accession number DQ893623; cDNA cloned into 

pcDNA3 vector at BamHI/NotI restriction sites) and selection with G418 (500 μg/ml).  

βTC-6 and INS-1 cells were subcultured at a 1:4 ratio once a week and maintained 

between passages 18 and 35.  Culture media were changed every 48 h. 

Cell extract preparation and Western blots: βTC-6 or INS-1 cells were incubated in the 

normal culture media or serum-free media with containing glucosamine in 0.5 mM 

HEPES, pH 7.5 (Sigma) at the indicated concentrations for different time periods prior 

to lysis with a modified RIPA lysis buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 50 mM 

NaF, 1 mM sodium pyrophosphate, 0.1% sodium deoxycholate, 1% NP-40 and protease 

inhibitors).  In certain experiments, INS-1 cells were treated with RPMI-1640 with 

11.1 (normal glucose, NG), 22.2, or 33.3 mM glucose and compensated with mannitol 
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for osmotic balance.  When required, pharmacological inhibitor against OGT 

[BADGP (Calbiochem) or Alloxan (Sigma)] or O-GlcNAcase (PUGNAc, Toronto 

Research Chemical Inc., Ontario, Canada) was directly added to serum-free culture 

media at the indicated concentrations 1 h before treatment with glucosamine in 0.5 mM 

HEPES (pH 7.5).  Protein concentration of lysates was quantitated by the BCA 

(Pierce) method, and normalized prior to analysis by standard Western blot procedures 

using antibodies against phospho-S473Akt, phospho-T308Akt, Akt, phospho-S9GSK3β, 

GSK3β, active caspase-3 (Cell Signaling), OGT (Sigma), and O-GlcNAc (RL2 clone 

from Affinity BioReagent or CTD110.6 clone from Convence). 

S473A and T479A Akt1 mutation: pCMV5-(HA)3-Akt1 wildtype (WT) was point-

mutated at Ser473 or Thr479 using the Quick-change site-directed mutagenesis system 

(Stratagene).  In each case, mutation to Ala was confirmed by direct sequence analysis. 

Immunoprecipitation: INS-1 cells were treated with glucosamine in 0.5 mM HEPES 

(pH 7.5) at different concentrations for 14 h in the absence of serum, then lysed with 

modified RIPA buffer.  Lysate containing 500 μg protein was mixed with anti-O-

GlcNAc (RL-2 clone) or anti-Akt antibody (0.5 μg/condition) and rotated for 2 h at 4oC.  

Protein A/G sepharose beads (30 μl of 50% slurry, Upstate) were added to the mixture 

before an additional 2 h rotation at 4oC.  The immunoprecipitates were collected, 
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washed, and eluted prior to standard Western blot analysis [16]. 

DNA content analysis: Subconfluent INS-1 cells in serum-free media were treated 

without or with glucosamine in 0.5 mM HEPES (pH 7.5) at different concentrations for 

22 h before propidium iodide (PI) staining for 30 min and FACS analysis as described 

previously [17]. 

Expression and elution of recombinant fusion proteins: Human ncOGT was cloned into 

pGEX-6p-2 vector (GE healthcare) at BamHI/NotI cloning sites.  Mouse Akt1 WT, 

S473A mutant, or T479A mutant were cloned into pET-28a-c(+) vector (Novagen) at 

BamHI/EcoRI cloning sites.  The sequence of each construct was confirmed by direct 

sequence analysis.  Recombinant proteins were induced in BL21 E.coli strain by 0.3 

mM IPTG for 3 h, prior to extraction via sonications.  Bacterial extracts were 

incubated with glutathione-sepharose or Ni2+-conjugated NTA (nitroloacetic acid) beads 

for 1 h and recombinant proteins were eluted from beads with GST fusion protein 

elution buffer (50 mM Tris-HCl, pH 8.2, 2 mM MgCl2, 0.2 mM Na2S2O5, 10% 

Glycerol, 20% Sucrose, 2 mM DTT, 1 mM Na2VO4, and protease inhibitors) or with 

(His)6 fusion protein elution buffer (8 M Urea, 50 mM Tris-HCl, pH 8.0, and 10 mM 

DTT) from beads.  

In vitro O-GlcNAc modification assay: Recombinant (His)6-Akt1 WT, S473A, or 
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T479A protein bound to Ni2+-NTA beads was washed with ice-cold PBS and incubated 

with 2 μg recombinant GST-ncOGT protein and 1 μM UDP-GlcNAc in OGT activity 

assay buffer (50 mM Tris-HCl, pH 7.5, 12.5 mM MgCl2, and 1 mM β-mercaptoethanol) 

for 30 min at 22oC.  In specific cases, ncOGT was inhibited by 1 mM BADGP (benzyl-

2-acetamido-2-deoxy-alpha-d-galactopyranoside).  After incubation, the reaction 

mixture was washed three times with ice-cold PBS, then 2x SDS-PAGE sample buffer 

was added to the mixtures prior to boiling for 5 min.  Standard Western blots using 

anti-O-GlcNAc (CTD 110.6 clone) (Convence) antibody were performed. 

2D-PAGE: Akt1 immunoprecipitates were prepared from control or INS-1 cells treated 

with 7.5 mM glucosamine in the absence of serum and solubilized in rehydration buffer 

(9 M urea, 2% CHAPS, 60 mM DTT, 0.5% pharmalyte, pH 4-7, 0.002% bromophenol 

blue).  Protein samples were loaded onto IPG strips and rehydrated overnight, then 

IEF gels were run as described previously [18].  Briefly, pre-cast immobilized pH 

gradient strips (24 cm, pH 4-7, linear, Amersham Biosciences, Uppsala, Sweden) for 

isoelectric focusing (IEF) were equilibrated for 15 min in a reducing solution (50 mM 

Tris-HCl, pH 8.8, 6 M urea, 30%(v/v) glycerol, 2% (w/v) SDS, 1% (w/v) DTT), and 

then for a further 15 min in an alkylating solution, which was identical to the reducing 

solution except that 2.5% (w/v) iodoacetamide was substituted for DTT.  Gel 
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electrophoresis was performed by standard 8% SDS-PAGE, and proteins were 

visualized by silver staining or immunoblotted with anti-O-GlcNAc (CTD 110.6 clone). 

MALDI-TOF/TOF: Spots on silver-stained gels corresponding to Akt1 were excised, 

destained by reduction using 30 mM potassium ferricyanide/100 mM sodium 

thiosulfate, and washed with distilled water for MALDI-TOF/TOF analysis as 

described previously [19].  Briefly, gel pieces were incubated with 0.2 M NH4HCO3 

for 20 min, dehydrated, shrunk twice with 100% acetonitrile, and dried by vacuum 

centrifugation.  For “in-gel” trypsin digestion of Akt1 immunoprecipitates, gel pieces 

were rehydrated in digestion buffer containing 0.05 M NH4HCO3 and 10 ng/μl of 

modified porcine trypsin (Promega) at 4oC for 45 min.  Excess supernatant was then 

removed, and the gel pieces were covered with 0.05 M NH4HCO3 buffer.  Digestion 

was performed overnight at 37oC, then tryptic peptides were extracted from the gel 

particles, desalted using a GELoader tip, and packed with POROS 20R2 resin (Applied 

Biosystems Inc.).  Peptide binding and washing were performed in 0.1% 

trifluoroacetic acid (TFA) in water.  To produce the MALDI sample matrix, α-cyano-

4-hydroxy cinnamic acid was dissolved at a concentration of 5 g/l in a solution 

containing 70% acetonitrile and 0.1% TFA.  Elution was performed with 1 μl of 

sample matrix and the eluted peptides were directly spotted on the target plate.  
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Protein identification was carried out by peptide mass fingerprinting (PMF) using matrix-

assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer 

(Voyager DE-PRO MALDITOF mass spectrometer) (Biosystems Inc.).  Mass spectra 

were registered in reflectron positive ion mode and mass accuracy was set at 50 ppm.  

Database searches for PMF were performed using the MASCOT search program 

developed by Matrix Science Ltd. (access is available on 

http://www.matrix.science.com), with the NCBI database (http://www. 

ncbi.nlm.nih.gov/entrez), and using the ExPASy Molecular Biology Server at the 

SWISSPROT database (http://www.expasy.org). 

Statistical analysis: The relative levels of pS473Akt1 and O-GlcNAc-modified Akt1 

were calculated after normalization against Akt1 band intensities measured by a 

densitometry and presented as mean ± standard deviation.  Mean values were 

compared using Student’s t-test; p values < 0.05 were considered significant. 
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Results 

Glucosamine treatment induced apoptosis of murine β-pancreatic cells. 

 To confirm that glucosamine-mediated hyperglycemic conditions induced cell death, 

rat INS-1 β-pancreatic cells were treated with glucosamine dissolved in 0.5 mM 

HEPES (pH 7.5) at different concentrations.  Cells were treated with glucosamine 

under osmotic control by mannitol in the absence of serum, and viable cells were 

counted after trypan blue staining.  Glucosamine treatment of INS-1 cells induced cell 

death (Fig. 1A), activated caspase 3 (Fig. 1B) and significantly increased the sub-G1 

population in a dose-dependent manner (Fig.1C).  Treatment with 7.5 mM 

glucosamine for less than 6 h showed a less significant apoptotic rate of ~ 9.0% (data 

not shown), therefore cells were generally treated for 14 h in the following experiments.  

Treatment with glucosamine also induced cell death in mouse βTC-6 pancreatic cells 

(Fig. 1D).  These observations confirm that glucosamine treatment of murine β-

pancreatic cells caused caspase-dependent apoptosis. 

Hyperglycemic conditions increased O-GlcNAc modification and concomitantly 

decreased Ser473 phosphorylation of Akt1. 

 When murine β-pancreatic cells were treated with glucosamine (7.5 mM GlcN), the 

overall O-GlcNAc modification level of proteins increased with a particularly obvious 



 14

modification of an approximately 60 kD protein that may correspond to Akt1 protein 

involved in cell survival (Fig. 2A).  It is thus likely that O-GlcNAc modification of 

certain molecules, such as Akt1, was increased in glucosamine-mediated hyperglycemic 

conditions to regulate cell viability [10].  We next tested the level of O-GlcNAc-

modified Akt1 in murine β-pancreatic cells without or with glucosamine treatment by 

immunoblotting using anti-Akt1 antibody for O-GlcNAc immunoprecipitates or anti-O-

GlcNAc antibody for Akt1 immunoprecipitates.  The O-GlcNAc modification level of 

Akt1 increased in a glucosamine dose-dependent manner, whereas Akt1 Ser473 

phosphorylation (pS473Akt1) was concomitantly decreased (Fig. 2B).  Consistent with 

these findings, treatment with higher concentrations of glucose also increased O-

GlcNAc modification of Akt1 and decreased pS473Akt1 (Fig. 2C).  Furthermore, 

phosphorylation of GSK3β, a substrate of Akt1, was reduced following glucosamine 

treatment, indicating that glucosamine treatment decreased Akt1 activity (Fig. 2B).  

These observations indicate that Akt1 Ser473 phosphorylation, and thus activity, might 

be mutually exclusive with O-GlcNAc modification, although it is not clear whether the 

modified residues are the same. 

OGT or O-GlcNAcase inhibitor reciprocally regulated Akt1 O-GlcNAc 

modification and pS473Akt1. 
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 To further confirm the reciprocal relationship between O-GlcNAc modification and 

phosphorylation of Akt1, pharmacological inhibitors against OGT (BADGP or alloxan) 

or O-GlcNAcase (PUGNAc) were added to the culture media before glucosamine 

treatment.  When INS-1 cells were treated with either BADGP or alloxan in the 

absence or presence of 7.5 mM glucosamine, the basal and glucosamine-mediated Akt1 

O-GlcNAc modifications were decreased, whereas pS473Akt1 levels were increased 

(Fig. 3A and B).  On the other hand, when removal of O-GlcNAc was blocked by 

PUGNAc treatment, the basal pS473Akt1 level was slightly reduced, whereas 

glucosamine-mediated pS473Akt1 levels were not observed regardless of whether 

PUGNAc was treated or not (Fig. 3C).  Interestingly, pT308Akt1 levels were not 

significantly changed by PUGNAc treatment, although they were slightly reduced by 

treatment with 7.5 mM GlcN (Fig. 3C). 

The Akt1 Ser473 residue appeared to be modified with O-GlcNAc following 

glucosamine treatment. 

 It is reasonable to predict that O-GlcNAc modification and phosphorylation of Akt1 

both occur at the Ser473 residue in a reciprocal manner.  Based on analysis by the 

YinOYang 1.2 program (http://www.cbs.dtu.dk/services/YinOYang/) [20], we found 

that Akt1 may be modified with O-GlcNAc at Ser122, Thr430, Ser473, and/or Thr479 
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residues, with the highest potential value of O-GlcNAc modification at Ser473 (Table 

1).  Thus, to map the O-GlcNAc modification site(s) of Akt1, we performed MALDI-

TOF/TOF analysis with tryptic-digested peptides of Akt1 immunoprecipitates.  Whole 

cell extracts from INS-1 cells without or with 7.5 mM glucosamine treatment were 

immunoprecipitated with anti-Akt1 antibody, and the immunoprecipitates were 

separated by 2D electrophoresis prior to immunoblotting with anti-O-GlcNAc antibody 

(CTD 110.6 clone) (Fig. 4A).  Akt1 was excised from silver-stained 2D 

electrophoresis gels and digested with trypsin prior to MALDI-TOF/TOF analysis.  

The unmodified 466-480 peptide of Akt1 at [M+H]+ m/z 1652.72 was observed among 

the tryptic-digested peptides prepared from control and glucosamine-treated cells (Fig. 

4B).  When the Ser or Thr residue is modified with O-GlcNAc the mass would be 

predicted to increase by ~ 203 dalton, therefore we screened for tryptic-digested 

peptide(s) of Akt1 with an increased mass of ~ 203 dalton.  Interestingly, the presumed 

O-GlcNAc-modified 466-480 peptide of Akt1 was observed at [M+H]+ m/z 1854.22 

among the tryptic-digested peptides prepared from the glucosamine-treated cells, but 

not from control cells (Fig. 4B, bottom).  This observation indicates that glucosamine 

treatment of INS-1 cells causes O-GlcNAc modification of Akt1, presumably at either 

Ser473 or Thr479. 
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Akt1 WT and T479A mutant, but not S473A mutant, were O-GlcNAc-modified by 

recombinant OGT. 

 Since Thr479 of Akt1 showed a tendency for O-GlcNAc modification in the 

YinOYang analysis (Table 1) and the O-GlcNAcylated peptide of Akt1 contained 

Thr479, we examined whether Ser473 and/or Thr479 were targeted by OGT using an in 

vitro O-GlcNAc modification assay.  Bacterial extracts of GST-ncOGT were incubated 

with recombinant (His)6-Akt1 WT, S473A mutant, or T479A mutant bound to Ni2+-

NTA beads as the substrate.  Compared with a mock control substrate of plain (His)6-

vector alone without Akt1 insert, O-GlcNAc modification of WT Akt1 was increased 

(Fig. 5A, lanes 1 and 2), whereas the Akt1 S473A mutant was not modified (Fig. 5A, 

lane 3).  Interestingly, the T479A mutant was robustly modified with O-GlcNAc, even 

more than WT Akt1 (Fig. 5A), indicating that Thr479 was not an O-GlcNAc 

modification site, and further suggesting that the T479A mutation might have caused 

structural changes that increased access of ncOGT to other Ser/Thr residue(s) on Akt1, 

including Ser473.  The in vitro O-GlcNAc modification of (His)6-Akt1 by 

recombinant GST-ncOGT occurred in a dose-dependent manner (Fig. 5B), and was 

blocked by treatment with the OGT inhibitor BADGP (Fig. 5C), indicating that the O-

GlcNAc modification observed in the in vitro assay was indeed mediated by OGT 
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activity. 

Intracellular O-GlcNAc modification of the S473A Akt1 mutant was not observed 

following glucosamine treatment or ncOGT overexpression. 

 We next examined whether O-GlcNAc-modification of the S473A Akt1 mutant 

occurred in an in vivo cellular system.  INS-1 cells were transfected with a mock 

control vector, (HA)3-Akt1 WT, or S473A mutant 24 h before treatment with control 

vehicle or glucosamine (7.5.mM) for 14 h.  Cell extracts were immunoblotted or 

immunoprecipitated with anti-O-GlcNAc antibody prior to Akt1 immunoblot analysis.  

In the absence of glucosamine, exogenous expression of Akt1 WT, but not S473A 

mutant, increased levels of pS473Akt1 (Fig. 6A, lanes 1 to 3).  However, pS473Akt1 

was not detected following glucosamine treatment, regardless of whether Akt1 WT or 

S473A mutant was expressed (Fig. 6A, lanes 4 to 6).  O-GlcNAc modification of Akt1 

occurred when the cells overexpressed Akt1 WT, but not S473A mutant protein, and 

was further increased when the cells were treated with glucosamine, compared with the 

untreated control (Fig. 6A, bottom).  Cell viability assays showed that viability was 

approximately 10% lower in cells transfected with the S473A Akt1 mutant than in cells 

transfected with WT Akt1 following treatment with control vehicle (5.7 ± 0.2 x 105 

versus 6.3 ± 0.3 x 105 cells, respectively) or GlcN (7.5 mM for 14 h) condition (3.3 ± 
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0.4 x 105 and 3.6 ± 0.4 x 105 cells, respectively) (data not shown).  This reduced 

viability of S473A Akt1-transfected cells, compared with WT transfected cells, was 

observed with a transfection efficiency of around 30-40%.  Furthermore, glucosamine 

treatment of cells transfected with WT or S473A Akt1 mutant resulted in a similar 

decrease in viability of 42-43%, indicating that O-GlcNAc-modified Akt1 (in the WT 

Akt1-transfected condition) or non-phosphorylated Akt1 (in the S473A Akt1-

transfected condition) have a similar effect on cell viability. 

 We further examined whether exogenous overexpression of ncOGT would regulate 

Akt1 O-GlcNAc modification and pS473Akt1 even in the absence of glucosamine 

treatment (Fig. 6B).  Cells that stably overexpress control vector or ncOGT were 

transiently transfected with either WT or S473A Akt1 and cell extracts were 

immunoblotted, or immunoprecipitated with anti-O-GlcNAc antibody before 

immunoblotting for Akt1.  When cells were transfected with Akt1 WT, ncOGT-

overexpressing cells showed a much higher level of Akt1 O-GlcNAc modification than 

control cells (Fig. 6C, lanes 1 and 3).  However, when the cells were transfected with 

S473A mutant Akt1, O-GlcNAc modifications were abolished in both control and 

ncOGT-overexpressing cells (Fig. 6C, lanes 2 and 4), further indicating that Ser473 is 

targeted by OGT.  Reciprocally, pS473Akt1 levels were partially reduced by 
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transfection with the S473A mutant, presumably due to incomplete transfection 

efficiency, and pS473Akt1 levels were lower in the ncOGT-overexpressing cells than in 

control cells (Fig. 6C).  Our observations that the Akt1 S473A mutation abolished O-

GlcNAc-modification, and that O-GlcNAc modification of Akt1 WT inversely 

correlated with pS473Akt1, suggest that O-GlcNAc modification at Akt1 Ser473 might 

compete with phosphorylation at Akt1 Ser473. 

OGT associated with Akt1 WT, but not S473A mutant, following glucosamine 

treatment. 

 We next examined the effect of hyperglycemic conditions on the localization of 

OGT and Akt1 via a coimmunoprecipitation approach.  Immunoprecipitates using 

anti-HA antibody from cells transfected with either WT Akt1 or S473A mutant Akt1 

tagged with (HA)3 were immunoblotted for OGT.  When treated with glucosamine, 

Akt1 WT co-immunoprecipitated OGT (presumably ncOGT of 116 kD), whereas 

S473A mutant did not (Fig. 7).  This observation suggests that modification of Akt1 

Ser473 with O-GlcNAc could be mediated by physical association between Akt1 and 

OGT, following a hyperglycemic treatment of INS-1 cells. 
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Discussion 

 Observations from this study indicated that Ser473 of Akt1 was modified with O-

GlcNAc when murine β-pancreatic cells were treated with glucosamine, a direct 

precursor of the downstream product of the hexosamine biosynthesis pathway (HBP).  

We found that a tryptic-digested peptide of Akt1 (amino acids 466 to 480 including 

Ser473 and Thr479) was modified with O-GlcNAc, consistent with theoretical 

predictions by the YinOYang 1.2 program that both Ser473 and Thr479 would be O-

GlcNAc-modified (http://www.cbs.dtu.dk/services/YinOYang/) (Table 1).  

Furthermore, the calculated potential for Ser473 to be O-GlcNAc-modified is higher 

than that for Thr479 (Table 1), and we observed that a T479A mutant of Akt1, but not a 

S473A mutant, maintained robust O-GlcNAc-modification in an in vitro O-GlcNAc 

modification assay.  Treatment with glucosamine or exogenous overexpression of 

mammalian ncOGT increased O-GlcNAc-modification of Akt1 WT, but not of S473A 

mutant, with a concomitant decrease in pS473Akt1.  Furthermore, Akt1 S473A mutant 

did not associate with OGT following treatment with glucosamine, whereas Akt1 WT 

did.  Together, these observations indicate that S473 Akt1 might be targeted by OGT in 

a glucosamine treatment-dependent manner.  The reciprocal relationship between 

increased O-GlcNAc-modification and decreased phosphorylation of Akt1 Ser473 upon 
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glucosamine treatment correlated with enhanced apoptotic death of murine β-pancreatic 

cells.  Since phosphorylation of Akt1 Ser473 is critical for its anti-apoptotic activity 

(14), we speculate that modification of Akt1 Ser473 plays an important role in 

determining the cell fate of murine β-pancreatic cells under conditions of extracellular 

hyperglycemia. 

 Since O-GlcNAc modification occurs at Ser/Thr residues, it is likely that O-GlcNAc 

modification and phosphorylation are reciprocally regulated under certain circumstances, 

leading to regulation of the protein’s activity and stability [21, 22].  Dynamic 

regulation of O-GlcNAc modification turnover in response to extracellular fluctuations 

in glucose levels may allow modulation of the signaling activities of certain intracellular 

proteins in β-pancreatic cells [4, 23, 24].  In particular, in diabetes mellitus, increased 

O-GlcNAc modification of many proteins under extracellular hyperglycemic conditions 

appears to be correlated with β-pancreatic cell death [11, 25]. 

 Glucosamine treatment of human islets of Langerhans and RIN rat β-pancreatic 

cells increases apoptosis due to serum-deprivation through impaired activation of the 

insulin receptor (IR)/IR substrate (IRS)/PI3-K/Akt survival pathway [10].  However, in 

this previous study, glucosamine treatment of β-pancreatic cells appeared to cause O-

GlcNAc modification of IR/IRS, upstream of PI3-K/Akt [10].  Although the O-
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GlcNAc modification residue was not determined, another report showed that Akt1 was 

shown to be O-GlcNAc-modified and phosphorylated in SH-SY5Y cells treated with 

insulin-like growth factor, and that PUGNAc-mediated accumulation of Akt1 O-

GlcNAc modification did not attenuate Akt1 phosphorylation with translocation of Akt1 

into the nucleus [15].  Therefore, Akt1 modification under hyperglycemic stimulations 

such as glucosamine treatment may be dependent on the signaling context and/or the 

cell type, which may have different expression levels of the proteins involved in the 

HBP pathway and O-GlcNAc modification turnover.  In this study, treatment with 

glucosamine increased O-GlcNAc modification of Akt1 Ser473, and concomitantly 

decreased phosphorylation of Akt1 Ser473 and its substrate, GSK3β, correlating with 

increased death of mouse βTC-6 and rat INS-1 β-pancreatic cells.  Our observations 

suggest that the balance between O-GlcNAc-modification and phosphorylation of Akt1 

Ser473 plays a role in the determination of apoptosis or survival of murine β-pancreatic 

cells, respectively, in response to hyperglycemic conditions induced by glucosamine 

treatment. 

 O-GlcNAc-modified proteins are typically phosphoproteins that play diverse roles 

in carbohydrate metabolism, signaling, gene regulation, and stress response [4].  This 

fact indicates that protein activity can depend on the nature of posttranslational 
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modifications that may ultimately regulate cell function or behavior, especially when 

the same Ser/Thr residue(s) on a specific protein may be modified with O-GlcNAc or 

O-phosphate.  Similar to our study for Akt1, estrogen receptor β (Ser16), c-Myc 

(Thr58), and endothelial nitric oxide synthase (eNOS, Ser1177) are also reciprocally O-

GlcNAc-modified or phosphorylated [26-28].  In the case of RNA polymerase II, 

multiple Ser/Thr residues in the COOH-terminal domain (CTD) are shown to be 

modified with O-GlcNAc or O-phosphate in a mutually exclusive manner, resulting in a 

reciprocal regulation of transcriptional elongation [29].  O-GlcNAc modification at 

Ser149 of p53 decreases the phosphorylation at Thr155 thereby stabilizing p53 by 

blocking ubiquitin-dependent proteolysis [21], indicating that these reciprocal 

modifications can also occur between adjacent residues.  For many proteins involved 

in signaling pathways, activity is determined by their phosphorylation status.  Since O-

GlcNAc modification at a particular Ser or Thr may sterically affect phosphorylation of 

the same or nearby residues, the activity of such proteins may also be regulated through 

O-GlcNAc modification.  Further investigation into the nature of O-GlcNAc 

modification may aid in the design and development of therapeutic reagents against 

diseases involving abnormal signaling activity such as type II diabetes and cancer. 



 25

References 

[1] N.E. Zachara, G.W. Hart, Cell signaling, the essential role of O-GlcNAc!, Biochim. 
Biophys. Acta 1761 (2006) 599-617. 
[2] K. Vosseller, K. Sakabe, L. Wells, G.W. Hart, Diverse regulation of protein function 
by O-GlcNAc: a nuclear and cytoplasmic carbohydrate post-translational modification, 
Curr. Opin. Chem. Biol. 6 (2002) 851-857. 
[3] W.A. Lubas, J.A. Hanover, Functional expression of O-linked GlcNAc transferase. 
Domain structure and substrate specificity, J. Biol. Chem. 275 (2000) 10983-10988. 
[4] D.C. Love, J.A. Hanover, The Hexosamine Signaling Pathway: Deciphering the "O-
GlcNAc Code", Sci. STKE 2005 (2005) re13-. 
[5] R.C. Cooksey, D.A. McClain, Transgenic Mice Overexpressing the Rate-Limiting 
Enzyme for Hexosamine Synthesis in Skeletal Muscle or Adipose Tissue Exhibit Total 
Body Insulin Resistance, Ann. NY Acad. Sci. 967 (2002) 102-111. 
[6] J.A. Hanover, Z. Lai, G. Lee, W.A. Lubas, S.M. Sato, Elevated O-linked N-
acetylglucosamine metabolism in pancreatic β-cells, Arch. Biochem. Biophys. 362 
(1999) 38-45. 
[7] F.M. Matschinsky, B. Glaser, M.A. Magnuson, Pancreatic β-cell glucokinase: 
closing the gap between theoretical concepts and experimental realities, Diabetes 47 
(1998) 307-315. 
[8] P.P. Sayeski, D. Wang, K. Su, I.O. Han, J.E. Kudlow, Cloning and partial 
characterization of the mouse glutamine:fructose-6-phosphate amidotransferase (GFAT) 
gene promoter, Nucleic Acids Res. 25 (1997) 1458-1466. 
[9] R. Kornfeld, Studies on L-glutamine D-fructose 6-phosphate amidotransferase. I. 
Feedback inhibition by uridine diphosphate-N-acetylglucosamine, J. Biol. Chem. 242 
(1967) 3135-3141. 
[10] C. D'Alessandris, F. Andreozzi, M. Federici, M. Cardellini, A. Brunetti, M. Ranalli, 
S. Del Guerra, D. Lauro, S. Del Prato, P. Marchetti, R. Lauro, G. Sesti, Increased O-
glycosylation of insulin signaling proteins results in their impaired activation and 
enhanced susceptibility to apoptosis in pancreatic β-cells, FASEB J. 18 (2004) 959-961. 
[11] K. Liu, A.J. Paterson, E. Chin, J.E. Kudlow, Glucose stimulates protein 
modification by O-linked GlcNAc in pancreatic β cells: Linkage of O-linked GlcNAc to 
β cell death, Proc. Natl. Acad. Sci. USA 97 (2000) 2820-2825. 
[12] G. Sesti, Apoptosis in the β cells: cause or consequence of insulin secretion defect 
in diabetes?, Ann. Med. 34 (2002) 444-450. 
[13] D.R. Plas, C.B. Thompson, Akt-dependent transformation: there is more to growth 



 26

than just surviving, Oncogene 24 (2005) 7435-7442. 
[14] B.D. Manning, L.C. Cantley, AKT/PKB signaling: navigating downstream, Cell 
129 (2007) 1261-1274. 
[15] J.C. Gandy, A.E. Rountree, G.N. Bijur, Akt1 is dynamically modified with O-
GlcNAc following treatments with PUGNAc and insulin-like growth factor-1, FEBS 
Lett 580 (2006) 3051-3058. 
[16] E.-S. Kang, M.-A. Oh, S.-A. Lee, T.Y. Kim, S.-H. Kim, N. Gotoh, Y.-N. Kim, J.W. 
Lee, EGFR phosphorylation-dependent formation of cell-cell contacts by Ras/Erks 
cascade inhibition, Biochim. Biophys. Acta - Mol. Cell Res. 1773 (2007) 833-843. 
[17] H.-P. Kim, T.-Y. Kim, M.-S. Lee, H.-S. Jong, T.-Y. Kim, J. Weon Lee, Y.-J. Bang, 
TGF-β1-mediated activations of c-Src and Rac1 modulate levels of cyclins and p27Kip1 
CDK inhibitor in hepatoma cells replated on fibronectin, Biochim. Biophys. Acta - Mol. 
Cell Res. 1743 (2005) 151-161. 
[18] Angelika Gorg, The current state of two-dimensional electrophoresis with 
immobilized pH gradients, Electrophoresis 21 (2000) 1037-1053. 
[19] J. Yoon, Y. Kang, K. Kim, J. Park, Y. Kim, Identification and purification of a 
soluble region of BubR1: A critical component of the mitotic checkpoint complex, 
Protein Exp. Purif. 44 (2005) 1-9. 
[20] R. Gupta, S. Brunak, Prediction of glycosylation across the human proteome and 
the correlation to protein function, Pac. Symp. Biocomput. (2002) 310-322. 
[21] W.H. Yang, J.E. Kim, H.W. Nam, J.W. Ju, H.S. Kim, Y.S. Kim, J.W. Cho, 
Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and 
stability, Nat. Cell Biol. 8 (2006) 1074-1083. 
[22] L. Wells, K. Vosseller, G.W. Hart, Glycosylation of nucleocytoplasmic proteins: 
signal transduction and O-GlcNAc, Science 291 (2001) 2376-2378. 
[23] J.A. Hanover, Glycan-dependent signaling: O-linked N-acetylglucosamine, FASRB 
J. 15 (2001) 1865-1876. 
[24] L. Wells, Y. Gao, J.A. Mahoney, K. Vosseller, C. Chen, A. Rosen, G.W. Hart, 
Dynamic O-glycosylation of nuclear and cytosolic proteins: further characterization of 
the nucleocytoplasmic β-N-acetylglucosaminidase, O-GlcNAcase, J. Biol. Chem. 277 
(2002) 1755-1761. 
[25] M. Federici, M. Hribal, L. Perego, M. Ranalli, Z. Caradonna, C. Perego, L. Usellini, 
R. Nano, P. Bonini, F. Bertuzzi, L.N. Marlier, A.M. Davalli, O. Carandente, A.E. 
Pontiroli, G. Melino, P. Marchetti, R. Lauro, G. Sesti, F. Folli, High glucose causes 
apoptosis in cultured human pancreatic islets of Langerhans: a potential role for 
regulation of specific Bcl family genes toward an apoptotic cell death program, 



 27

Diabetes 50 (2001) 1290-1301. 
[26] X. Cheng, R.N. Cole, J. Zaia, G.W. Hart, Alternative O-glycosylation/O-
phosphorylation of the murine estrogen receptor β, Biochemistry 39 (2000) 11609-
11620. 
[27] X.L. Du, D. Edelstein, S. Dimmeler, Q. Ju, C. Sui, M. Brownlee, Hyperglycemia 
inhibits endothelial nitric oxide synthase activity by posttranslational modification at the 
Akt site, J. Clin. Invest. 108 (2001) 1341-1348. 
[28] T.Y. Chou, G.W. Hart, C.V. Dang, c-Myc is glycosylated at threonine 58, a known 
phosphorylation site and a mutational hot spot in lymphomas, J. Biol. Chem. 270 (1995) 
18961-18965. 
[29] W.G. Kelly, M.E. Dahmus, G.W. Hart, RNA polymerase II is a glycoprotein. 
Modification of the COOH-terminal domain by O-GlcNAc, J. Biol. Chem. 268 (1993) 
10416-10424. 
 



 28

Acknowledgements 

 This work was supported by the Korea Science and Engineering Foundation 

(KOSEF) grant funded by the Korea government (MOST) (KOSEF R01-2006-000-

10248-0 and R11-2007-007-01004-0 to JW Lee).



 29

Figure legends 

Fig. 1.  Glucosamine treatment caused death of murine β-pancreatic cells.  (A 

and D)  Rat or mouse β-pancreatic INS-1 (A) or βTC-6 (D) cells, respectively, seeded 

into 6 well culture plates.  One day after, serum was deprived and treatment of 

glucosamine (GlcN) in 0.5 mM HEPES (pH 7.5) was done at the indicated 

concentrations for 22 h.  Mannitol and glucose were parallelly used to compensate 

osmotic balance.  After incubation, viable cells were counted with a hemocytometer 

following trypan blue stain.  (B) INS-1 cells treated without or with 7.5 mM 

glucosamine (GlcN), as above, were harvested and immunoblotted for active caspase 3 

and α-tubulin.  (C) INS-1 cells were manipulated as in (A), before FACS analysis of 

PI-stained cells for DNA contents.  Data shown represent at least three independent 

experiments. 

 

Fig. 2.  Hyperglycemic conditions increased O-GlcNAc modification and 

concomitantly reduced Ser473 phosphorylation of Akt1.  (A)  INS-1 or βTC-6 

cells were treated without or with 7.5 mM glucosamine (GlcN) for the indicated periods 

in the absence of serum.  Whole cell lysates were prepared after incubation and used 

for standard Western blots to see O-GlcNAc-modified proteins.  Arrows indicate 
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molecular weights of protein markers.  (B) INS-1 (upper) or βTC-6 (lower) cells were 

treated with glucosamine at the indicated concentrations for 14 h in the absence of 

serum.  Both mannitol and glucose were included into the treatment for osmotic 

compensation, as in Fig. 1.  After incubation, cell lysates were prepared and used for 

standard Western blots for pS473Akt1, pS9GSK3β and Akt1 (lysates) or 

immunoprecipitated with anti-O-GlcNAc or anti-Akt antibody for immunoblots against 

Akt or O-GlcNAc (CTD 110.6 clone), respectively, to reveal O-GlcNAc modified Akt.  

(C) INS-1 cells were treated with glucose (11.1. mM normal glucose in RPMI-1640) at 

11.1, 22.2 or 33.3. mM for 3 days at osmotic balance with mannitol, before whole cell 

lysates preparation.  The lysates were immunoblotted or immunoprecipitated with anti-

Akt prior to immunoblots against Akt or O-GlcNAc (CTD 110.6 clone).  The relative 

pS473Akt1 and O-GlcNAc-modified Akt1 levels under diverse experimental conditions 

were calculated for graphic presentation (mean ± standard deviation) after 

normalization of them over Akt1 band intensities measured by a densitometry.  Data 

shown represent at least three independent experiments. 

 

Fig. 3.  OGT or O-GlcNAcase inhibitor regulated reciprocally Akt1 O-GlcNAc 

modification and pS473Akt1.  (A to C) OGT inhibitor, BADGP (A) or alloxan (B), or 
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O-GlcNAcase inhibitor, PUGNAc (C), was added to serum-deprived culture media.  

One hour later, cells were treated without or with 7.5 mM glucosamine (GlcN) for 14 h, 

prior to lysate harvests for standard Western blots (lysates in A, B and C) or 

immunoprecipitation (IP) with anti-O-GlcNAc antibody (RL2 clone) for Akt 

immunoblots.  Both mannitol and glucose were included for osmotic compensation 

(not depicted), as in Fig. 1.  The relative pS473Akt1 and/or O-GlcNAc-modified Akt1 

levels under diverse experimental conditions were calculated for graphic presentation 

(mean ± standard deviation) after normalization of them over Akt1 band intensities 

measured by a densitometry.  * indicates p values < 0.05 for significant differences.  

Data shown represent three different experiments. 

 

Fig. 4.  The Akt1 Ser473 residue modified with O-GlcNAc following glucosamine 

treatment.  (A) INS-1 cells were seeded and treated without or with 7.5 mM 

glucosamine (GlcN) in the absence of serum for 14 h, prior to cell harvests.  Both 

mannitol and glucose were included into the treatment for osmotic compensation (not 

depicted), as in Fig. 1.  Normalized lysates were immunoprecipitated with anti-Akt 

antibody.  Akt immunoprecipitates were processed for standard 2-D electrophoresis 

before immunoblots using anti-O-GlcNAc antibody (CTD 110.6 clone), as explained in 
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the Materials and Methods.  (B) The Akt spots on silver-stained gels, corresponding to 

circles of the anti-O-GlcNAc immunoblots as in (A), were cut and trypsinized.  The 

digests were processed for MALDI-TOF/TOF mass spectrometry to examine the 

existence of O-GlcNAc-modified Akt1 peptide including Ser473.  Note that 

hyperglycemic condition resulted in a peak corresponding to a peptide (amino acids 466 

to 480) including Ser473 with an O-GlcNAc modification, which causes an increase in 

mass (201.5 dalton) from 1652.72 to 1854.22 dalton. 

 

Fig. 5.  Akt1 WT, but not the S473A mutant, was O-GlcNAc-modified by 

recombinant ncOGT.  (A) Recombinant GST-human ncOGT was prepared from 

bacterial cultures, and recombinant mock, (His)6-Akt1 WT, S473A, or T479A proteins 

were purified and bound to Ni+-NTA beads.  Both recombinant GST-ncOGT and 

(His)6-Akt1 proteins were mixed with 1 μM UDP-GlcNAc, and the mixtures were 

incubated for 30 min at 22oC while shaking.  After incubation, the reaction mixture 

was diluted abundantly with the reaction buffer and spun down for washings.  SDS-

PAGE sample buffer (2 x) was added to the washed beads and boiled prior to recovery 

of proteins for standard Western blots using O-GlcNAc antibody (CTD 110.6 clone).  

(B) Different amount of recombinant mock, (His)6-Akt1 WT, or S473A proteins on Ni+-
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NTA beads were mixed with recombinant GST-human ncOGT for in vitro assay for O-

GlcNAc modification, as above.  (C) During the in vitro assay for mock, (His)6-Akt1 

WT or S473A mutant, as in (B), one set of reactions was untreated and the other set was 

treated with 3.3 mM BADGP, an OGT inhibitor.  In parallel, recombinant proteins on 

gels were stained with coomassie blue (A) or immunoblotted with either anti-GST (B) 

or anti-(His)6 antibody (C) for their equal loadings.  The relative O-GlcNAc-modified 

Akt1 levels under diverse experimental conditions were calculated for graphic 

presentation (mean ± standard deviation) based on band intensities measured by a 

densitometry.  * indicates p values < 0.05 for significant differences.  Data shown 

represent at least three isolated assays. 

 

Fig. 6.  No O-GlcNAc modification of S473A Akt1 mutant by glucosamine 

treatment or ncOGT overexpression.  (A) INS-1 cells were transiently transfected 

with mock, Akt1 WT or S473A mutant.  One day later, the cells were treated without 

(Control) or with 7.5 mM glucosamine (GlcN) in the absence of serum for 14 h.  After 

incubation, cell lysates were prepared and normalized for standard Western blots using 

anti-phospho-S473Akt1 or anti-HA antibody (lysate) or immunoprecipitated (IP) with 

anti-O-GlcNAc antibody (RL2 clone) prior to Akt1 immunoblots (bottom panel).   (B) 



 34

Mock (Con) or stably OGT (human ncOGT)-expressing INS-1 cells were prepared.  

Whole cell lysates were prepared from a subconfluent condition and blotted for ncOGT 

and mitochondrial OGT (mOGT) expression levels.  (C) Mock (Con) or ncOGT stable 

INS-1 cells were transiently transfected with Akt1 WT or S473A mutant.  Two days 

after transfection, lysates were prepared and used for standard Western blots for the 

indicated molecules (lysate) or immunoprecipitated (IP) with anti-O-GlcNAc antibody 

(RL2 clone) prior to Akt1 immunoblots (bottom panel).  Both mannitol and glucose 

were included into the treatment for osmotic compensation (not depicted), as in Fig. 1.  

The relative pS473Akt1 and O-GlcNAc-modified Akt1 levels under diverse experimental 

conditions were calculated for graphic presentation (mean ± standard deviation).  * 

indicates p values < 0.05 for significant differences.  Data shown represent at least 

three different assays. 

 

Fig. 7.  Akt1 WT, but not the S473A mutant, associates with OGT following 

glucosamine treatment.  INS-1 cells were transiently transfected with (HA)3-Akt1 

WT or S473A mutant.  One day later, the cells were treated with 7.5 mM glucosamine 

(GlcN) in the absence of serum for 14 h.  Both mannitol and glucose were included 

into the treatment for osmotic compensation (not depicted), as in Fig. 1.  After 



 35

incubation, cells were harvested for an immunoprecipitation with anti-HA antibody 

prior to OGT immunoblots.  Data shown represent at least three independent assays.
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Table 1.  Predicted O-GlcNAc sites of Akt1 protein sequence by YinOYang 2.11. 

 

SeqName Residue O-GlcNAc result Potential2 Thresh. 

(1) 

Thresh

(2) 

Akt1 122 S ++ 0.5080 0.4017 0.4918

Akt1 430 T ++ 0.5647 0.4071 0.4992

Akt1 473 S ++ 0.6456 0.4484 0.5548

Akt1 479 T + 0.3882 0.3791 0.4614

 

 1) (http://www.cbs.dtu.dk/services/YinOYang/) 

   2) The higher potential value is, the higher the tendency to be modified with O-

GlcNAc is. 

 3) ‘++’ indicates a higher possibility of O-GlcNAcylation than ‘+’. 
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