495 research outputs found

    A cross-sectional study of ocular surface discomfort and corneal nerve dysfunction after paclitaxel treatment for cancer

    Get PDF
    Ocular surface dysfunction is common in patients receiving anti-cancer drug treatment. The effects of paclitaxel, a neurotoxic chemotherapeutic drug, on ocular surface discomfort associated with dry eye disease was investigated. Patients with cancer who had completed paclitaxel treatment between 3 and 24 months prior to assessment (n = 29) and age- and sex-matched healthy control subjects (n = 29) were recruited and assessed with the Ocular Surface Disease Index (OSDI) to measure ocular surface discomfort. In-vivo corneal confocal microscopy was used to evaluate corneal nerve parameters in the right eye. Peripheral neurotoxicity was assessed using patient-reported outcomes and clinical grading scales. The paclitaxel group had significantly worse OSDI total scores compared with controls (Median, Md = 19.3 and Md = 0, p = 0.007, respectively). Corneal nerve fiber and inferior whorl lengths were reduced in the paclitaxel group compared with controls (14.2 ± 4.0 and 14.4 ± 4.0 mm/mm2 vs. 16.4 ± 4.0 and 16.9 ± 4.9 mm/mm2, respectively, p = 0.04). When analyzed by presence of peripheral neuropathy, paclitaxel-treated patients with neuropathy showed worse OSDI total scores compared to those without peripheral neuropathy post-treatment (p = 0.001) and healthy controls (p < 0.001). More severe ocular discomfort and worse visual function was associated with greater peripheral neurotoxicity symptoms (r = 0.60, p = 0.001) and neuropathy severity (r = 0.49, p = 0.008), respectively. Patients who have been treated with paclitaxel have a higher risk of ocular surface discomfort associated with dry eye disease, particularly those with peripheral neuropathy. Future longitudinal studies should investigate the clinical impact of corneal nerve reduction in dry eye disease

    Considerations for establishing and maintaining international research collaboration: the example of chemotherapy-induced peripheral neurotoxicity (CIPN)—a white paper

    Get PDF
    PurposeThis white paper provides guidance regarding the process for establishing and maintaining international collaborations to conduct oncology/neurology-focused chemotherapy-induced peripheral neurotoxicity (CIPN) research.MethodsAn international multidisciplinary group of CIPN scientists, clinicians, research administrators, and legal experts have pooled their collective knowledge regarding recommendations for establishing and maintaining international collaboration to foster advancement of CIPN science.ResultsExperts provide recommendations in 10 categories: (1) preclinical and (2) clinical research collaboration; (3) collaborators and consortiums; (4) communication; (5) funding; (6) international regulatory standards; (7) staff training; (8) data management, quality control, and data sharing; (9) dissemination across disciplines and countries; and (10) additional recommendations about feasibility, policy, and mentorship.ConclusionRecommendations to establish and maintain international CIPN research collaboration will promote the inclusion of more diverse research participants, increasing consideration of cultural and genetic factors that are essential to inform innovative precision medicine interventions and propel scientific discovery to benefit cancer survivors worldwide.Relevance to inform research policyOur suggested guidelines for establishing and maintaining international collaborations to conduct oncology/neurology-focused chemotherapy-induced peripheral neurotoxicity (CIPN) research set forth a challenge to multinational science, clinical, and policy leaders to (1) develop simple, streamlined research designs; (2) address logistical barriers; (3) simplify and standardize regulatory requirements across countries; (4) increase funding to support international collaboration; and (5) foster faculty mentorship

    Corneal dendritic cells and the subbasal nerve plexus following neurotoxic treatment with oxaliplatin or paclitaxel

    Get PDF
    Immune cell infiltration has been implicated in neurotoxic chemotherapy for cancer treatment. However, our understanding of immune processes is still incomplete and current methods of observing immune cells are time consuming or invasive. Corneal dendritic cells are potent antigen-presenting cells and can be imaged with in-vivo corneal confocal microscopy. Corneal dendritic cell densities and nerve parameters in patients treated with neurotoxic chemotherapy were investigated. Patients treated for cancer with oxaliplatin (n = 39) or paclitaxel (n = 48), 3 to 24 months prior to assessment were recruited along with 40 healthy controls. Immature (ImDC), mature (MDC) and total dendritic cell densities (TotalDC), and corneal nerve parameters were analyzed from in-vivo corneal confocal microscopy images. ImDC was increased in the oxaliplatin group (Median, Md = 22.7 cells/mm 2) compared to healthy controls (Md = 10.1 cells/mm 2, p = 0.001), but not in the paclitaxel group (Md = 10.6 cells/mm 2). ImDC was also associated with higher oxaliplatin cumulative dose (r = 0.33, p = 0.04) and treatment cycles (r = 0.40, p = 0.01). There was no significant difference in MDC between the three groups (p > 0.05). Corneal nerve parameters were reduced in both oxaliplatin and paclitaxel groups compared to healthy controls (p < 0.05). There is evidence of elevation of corneal ImDC in oxaliplatin-treated patients. Further investigation is required to explore this potential link through longitudinal studies and animal or laboratory-based immunohistochemical research

    Dose Effects of Oxaliplatin on Persistent and Transient Na+ Conductances and the Development of Neurotoxicity

    Get PDF
    BACKGROUND: Oxaliplatin, a platinum-based chemotherapy utilised in the treatment of colorectal cancer, produces two forms of neurotoxicity--acute sensorimotor neuropathic symptoms and a dose-limiting chronic sensory neuropathy. Given that a Na(+) channelopathy has been proposed as the mechanism underlying acute oxaliplatin-induced neuropathy, the present study aimed to determine specific mechanisms of Na(+) channel dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: Specifically the function of transient and persistent Na(+) currents were followed during treatment and were investigated in relation to oxaliplatin dose level. Eighteen patients were assessed before and after a single oxaliplatin infusion with motor and sensory axonal excitability studies performed on the median nerve at the wrist. While refractoriness (associated with Na(+) channel inactivation) was significantly altered post-oxaliplatin infusion in both motor (Pre: 31.7±6.4%; Post: 68.8±14.5%; P≤.001) and sensory axons (Pre: 31.4±5.4%; Post: 21.4±5.5%; P<.05), strength-duration time constant (marker of persistent Na(+) conductances) was not significantly altered post-infusion (Motor Pre: 0.395±0.01 ms; Post: 0.394±0.02 ms; NS; Sensory Pre:0.544±0.03 ms; Post: 0.535±0.05 ms; NS). However, changes in strength-duration time constant were significantly correlated with changes in refractoriness in motor and sensory axons (Motor correlation coefficient = -.65; P<.05; Sensory correlation coefficient = .67; P<.05). CONCLUSIONS/SIGNIFICANCE: It is concluded that the predominant effect of acute oxaliplatin exposure in human motor and sensory axons is mediated through changes in transient rather than persistent Na(+) conductances. These findings are likely to have implications for the design and trial of neuroprotective strategies

    MicroRNA Expression Profiling of the Porcine Developing Brain

    Get PDF
    BACKGROUND: MicroRNAs are small, non-coding RNA molecules that regulate gene expression at the post-transcriptional level and play an important role in the control of developmental and physiological processes. In particular, the developing brain contains an impressive diversity of microRNAs. Most microRNA expression profiling studies have been performed in human or rodents and relatively limited knowledge exists in other mammalian species. The domestic pig is considered to be an excellent, alternate, large mammal model for human-related neurological studies, due to its similarity in both brain development and the growth curve when compared to humans. Considering these similarities, studies examining microRNA expression during porcine brain development could potentially be used to predict the expression profile and role of microRNAs in the human brain. METHODOLOGY/PRINCIPAL FINDINGS: MicroRNA expression profiling by use of microRNA microarrays and qPCR was performed on the porcine developing brain. Our results show that microRNA expression is regulated in a developmentally stage-specific, as well as a tissue-specific manner. Numerous developmental stage or tissue-specific microRNAs including, miR-17, miR-18a, miR-29c, miR-106a, miR-135a and b, miR-221 and miR-222 were found by microarray analysis. Expression profiles of selected candidates were confirmed by qPCR. CONCLUSIONS/SIGNIFICANCE: The differential expression of specific microRNAs in fetal versus postnatal samples suggests that they likely play an important role in the regulation of developmental and physiological processes during brain development. The data presented here supports the notion that microRNAs act as post-transcriptional switches which may regulate gene expression when required

    Src Kinases Are Required for a Balanced Production of IL-12/IL-23 in Human Dendritic Cells Activated by Toll-Like Receptor Agonists

    Get PDF
    BACKGROUND: Pathogen recognition by dendritic cells (DC) is crucial for the initiation of both innate and adaptive immune responses. Activation of Toll-like Receptors (TLRs) by microbial molecular patterns leads to the maturation of DC, which present the antigen and activate T cells in secondary lymphoid tissues. Cytokine production by DC is critical for shaping the adaptive immune response by regulating T helper cell differentiation. It was previously shown by our group that Src kinases play a key role in cytokines production during TLR4 activation in human DC. PRINCIPAL FINDINGS: In this work we investigated the role of Src kinases during different TLRs triggering in human monocyte-derived DC (MoDC). We found that Src family kinases are important for a balanced production of inflammatory cytokines by human MoDC upon stimulation of TLR3 and 8 with their respective agonists. Disruption of this equilibrium through pharmacological inhibition of Src kinases alters the DC maturation pattern. In particular, while expression of IL-12 and other inflammatory cytokines depend on Src kinases, the induction of IL-23 and co-stimulatory molecules do not. Accordingly, DC treated with Src inhibitors are not compromised in their ability to induce CD4 T cell proliferation and to promote the Th17 subset survival but are less efficient in inducing Th1 differentiation. CONCLUSIONS: We suggest that the pharmacological modulation of DC maturation has the potential to shape the quality of the adaptive immune response and could be exploited for the treatment of inflammation-related diseases

    Interaction of β-Sheet Folds with a Gold Surface

    Get PDF
    The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111) surface using computational molecular dynamics (MD) simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN). We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles) will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance

    Probing the competition among different coordination motifs in metal-ciprofloxacin complexes through IRMPD spectroscopy and DFT calculations

    Get PDF
    The vibrational spectra of ciprofloxacin complexes with monovalent (Li+, Na+, K+, Ag+) and polyvalent (Mg2+, Al3+) metal ions are recorded in the range 1000-1900 cm(-1) by means of infrared multiple-photon dissociation (IRMPD) spectroscopy. The IRMPD spectra are analyzed and interpreted in the light of density functional theory (DFT)-based quantum chemical calculations in order to identify the possible structures present under our experimental conditions. For each metal-ciprofloxacin complex, four isomers are predicted, considering different chelation patterns. A good agreement is found between the measured IRMPD spectrum and the calculated absorption spectrum of the most stable isomer for each complex. Metal ion size and charge are found to drive the competition among the different coordination motifs: small size and high charge density metal ions prefer to coordinate the quinolone between the two carbonyl oxygen atoms, whereas large-size metal ions prefer the carboxylate group as a coordination site. In the latter case, an intramolecular hydrogen bond compensates the weaker interaction established by these cations. The role of the metal cation on the stabilization of ionic and nonionic structures of ciprofloxacin is also investigated. It is found that large-size metal ions preferentially stabilize charge separated motifs and that the increase of metal ion charge has a stabilizing effect on the zwitterionic form of ciprofloxacin
    • …
    corecore