2,355 research outputs found
Autobiographically Significant Concepts: More Episodic than Semantic in Nature? An Electrophysiological Investigation of Overlapping Types of Memory
A common assertion is that semantic memory emerges from episodic memory, shedding the distinctive contexts associated with episodes over time and/or repeated instances. Some semantic concepts, however, may retain their episodic origins or acquire episodic information during life experiences. The current study examined this hypothesis by investigating the ERP correlates of autobiographically significant (AS) concepts, that is, semantic concepts that are associated with vivid episodic memories. We inferred the contribution of semantic and episodic memory to AS concepts using the amplitudes of the N400 and late positive component, respectively. We compared famous names that easily brought to mind episodic memories (high AS names) against equally famous names that did not bring such recollections to mind (low AS names) on a semantic task (fame judgment) and an episodic task (recognition memory). Compared with low AS names, high AS names were associated with increased amplitude of the late positive component in both tasks. Moreover, in the recognition task, this effect of AS was highly correlated with recognition confidence. In contrast, the N400 component did not differentiate the high versus low AS names but, instead, was related to the amount of general knowledge participants had regarding each name. These results suggest that semantic concepts high in AS, such as famous names, have an episodic component and are associated with similar brain processes to those that are engaged by episodic memory. Studying AS concepts may provide unique insights into how episodic and semantic memory interact
Implantation of bone marrow-derived buffy coat can supplement bone marrow stimulation for articular cartilage repair
SummaryObjectiveBone marrow stimulation (BMS) has been regarded as a first line procedure for repair of articular cartilage. However, repaired cartilage from BMS is known to be unlike that of hyaline cartilage and its inner endurance is not guaranteed. The reason presumably came from a shortage of cartilage-forming cells in blood clots derived by BMS. In order to increase repairable cellularity, the feasibility of autologous bone marrow-derived buffy coat transplantation in repair of large full-thickness cartilage defects was investigated in this study.MethodsRabbits were divided into four groups: the defect remained untreated as a negative control; performance of BMS only (BMS group); BMS followed by supplementation of autologous bone marrow buffy coat (Buffy coat group); transplantation of autologous osteochondral transplantation (AOTS) as a positive control.ResultsRepair of cartilage defects in the Buffy coat group in a rabbit model was more effective than BMS alone and similar to AOTS. Gross findings, histological analysis, histological scoring, immunohistochemistry, and chemical assay demonstrated that supplementation of autologous bone marrow buffy coat after BMS arthroplasty effectively repaired cartilage defects in a rabbit model, and was more effective than BMS arthroplasty alone.ConclusionSupplementation of autologous bone marrow-derived buffy coat in cases of BMS could be a useful clinical protocol for cartilage repair
Nucleon Polarizabilities from Deuteron Compton Scattering within a Green's-Function Hybrid Approach
We examine elastic Compton scattering from the deuteron for photon energies
ranging from zero to 100 MeV, using state-of-the-art deuteron wave functions
and NN-potentials. Nucleon-nucleon rescattering between emission and absorption
of the two photons is treated by Green's functions in order to ensure gauge
invariance and the correct Thomson limit. With this Green's-function hybrid
approach, we fulfill the low-energy theorem of deuteron Compton scattering and
there is no significant dependence on the deuteron wave function used.
Concerning the nucleon structure, we use Chiral Effective Field Theory with
explicit \Delta(1232) degrees of freedom within the Small Scale Expansion up to
leading-one-loop order. Agreement with available data is good at all energies.
Our 2-parameter fit to all elastic data leads to values for the
static isoscalar dipole polarizabilities which are in excellent agreement with
the isoscalar Baldin sum rule. Taking this value as additional input, we find
\alpha_E^s= (11.3+-0.7(stat)+-0.6(Baldin)) x 10^{-4} fm^3 and \beta_M^s =
(3.2-+0.7(stat)+-0.6(Baldin)) x 10^{-4} fm^3 and conclude by comparison to the
proton numbers that neutron and proton polarizabilities are essentially the
same.Comment: 47 pages LaTeX2e with 20 figures in 59 .eps files, using graphicx.
Minor modifications; extended discussion of theoretical uncertainties of
polarisabilities extraction. Version accepted for publication in EPJ
Spin and charge order in the vortex lattice of the cuprates: experiment and theory
I summarize recent results, obtained with E. Demler, K. Park, A. Polkovnikov,
M. Vojta, and Y. Zhang, on spin and charge correlations near a magnetic quantum
phase transition in the cuprates. STM experiments on slightly overdoped BSCCO
(J.E. Hoffman et al., Science 295, 466 (2002)) are consistent with the
nucleation of static charge order coexisting with dynamic spin correlations
around vortices, and neutron scattering experiments have measured the magnetic
field dependence of static spin order in the underdoped regime in LSCO (B. Lake
et al., Nature 415, 299 (2002)) and LaCuO_4+y (B. Khaykovich et al., Phys. Rev.
B 66, 014528 (2002)). Our predictions provide a semi-quantitative description
of these observations, with only a single parameter measuring distance from the
quantum critical point changing with doping level. These results suggest that a
common theory of competing spin, charge and superconducting orders provides a
unified description of all the cuprates.Comment: 18 pages, 7 figures; Proceedings of the Mexican Meeting on
Mathematical and Experimental Physics, Mexico City, September 2001, to be
published by Kluwer Academic/Plenum Press; (v2) added clarifications and
updated reference
Optical band edge shift of anatase cobalt-doped titanium dioxide
We report on the optical properties of magnetic cobalt-doped anatase phase
titanium dioxide Ti_{1-x}Co_{x}O_{2-d} films for low doping concentrations, 0
<= x <= 0.02, in the spectral range 0.2 to 5 eV. For well oxygenated films (d
<< 1) the optical conductivity is characterized by an absence of optical
absorption below an onset of interband transitions at 3.6 eV and a blue shift
of the optical band edge with increasing Co concentration. The absence of below
band gap absorption is inconsistent with theoretical models which contain
midgap magnetic impurity bands and suggests that strong on-site Coulomb
interactions shift the O-band to Co-level optical transitions to energies above
the gap.Comment: 5 pages, 4 figures, 1 table; Version 2 - major content revisio
Compton Scattering on the Deuteron in Baryon Chiral Perturbation Theory
Compton scattering on the deuteron is studied in the framework of baryon
chiral perturbation theory to third order in small momenta, for photon energies
of order the pion mass. The scattering amplitude is a sum of one- and
two-nucleon mechanisms with no undetermined parameters. Our results are in good
agreement with existing experimental data, and a prediction is made for
higher-energy data being analyzed at SAL.Comment: 39 pages LaTeX, 19 figures (uses epsf
Two Nucleons on a Lattice
The two-nucleon sector is near an infrared fixed point of QCD and as a result
the S-wave scattering lengths are unnaturally large compared to the effective
ranges and shape parameters. It is usually assumed that a lattice QCD
simulation of the two-nucleon sector will require a lattice that is much larger
than the scattering lengths in order to extract quantitative information. In
this paper we point out that this does not have to be the case: lattice QCD
simulations on much smaller lattices will produce rigorous results for nuclear
physics.Comment: 13 pages, 6 figure
Male breast cancer: a disease distinct from female breast cancer
Purpose: Male breast cancer (BC) is rare, representing approximately 1% of cancers that occur in men and approximately 1% of all BCs worldwide. Because male BC is rare, not much is known about the disease, and treatment recommendations are typically extrapolated from data available from clinical trials enrolling female BC patients. Methods: We review the epidemiology, risk factors, prognosis, and the varied molecular and clinicopathologic features that characterize male BC. In addition, we summarize the available data for the use of systemic therapy in the treatment of male BC and explore the ongoing development of targeted therapeutic agents for the treatment of this subgroup of BCs. Results: There are important biological differences between male and female BC. Male BC is almost exclusively hormone receptor positive (+), including the androgen receptor (AR), and is associated with an increased prevalence of BRCA2 germline mutations, especially in men with increased risk for developing high-risk BC. Additional research is warranted to better characterize male BC. To accomplish this, a multi-national consortium approach, such as the International Male Breast Cancer Program, is needed in response to the scarcity of patients. This approach allows the pooling of information from a large number of men with BC and the creation of registries for future therapeutic-focused clinical trials. Conclusions: Given the unique biology of BC in men, promising new therapeutic targets are currently under investigation, including the use of poly-ADP-ribose polymerase inhibitors or AR-targeted agents either as monotherapy or in combination with other agents
Earthquake damage estimation systems: Literature review
Earthquake is an unpredictable natural phenomenon that create a vast amount of damage, affecting communities and their environment. To reduce the effects of such hazards, frameworks like building resilience have emerged. These frameworks target on increasing recovery after such disaster, by introducing new designs, technologies, and components to the building. To calculate the value of such improvements, use of loss estimation systems are essential. This paper compares and contrasts two most widely adopted loss assessment tools available, namely PACT and SLAT. Comparison of these tools mainly focuses on the consequence functions of the two methods. Recommendations are suggested to improve and complement these tools in future use
- …