216 research outputs found

    Polarization dependence of emission spectra of multiexcitons in self-assembled quantum dots

    Full text link
    We have investigated the polarization dependence of the emission spectra of p-shell multiexcitons of a quantum dot when the single particle level spacing is larger than the characteristic energy of the Coulomb interactions. We find that there are many degenerate multiexciton states. The emission intensities depend on the number of degenerate initial and final states of the optical transitions. However, unlike the transition energies, they are essentially independent of the strength of the Coulomb interactions. In the presence of electron-hole symmetry the independence is exact.Comment: 7 pages, 5 figures, published in Solid State Commu

    Stabilized electron emission from silicon coated carbon nanotubes for a high-performance electron source

    Get PDF
    The authors show that carbon nanotubes (CNTs) coated with an amorphous silicon layer around their periphery show enhanced and stable electron emission. The CNT-field emitter array was grown on silicon substrate through a resist-assisted patterning process. The CNTs become coated with silicon from the substrate, which is etched and redeposited onto the CNTs. The authors obtained enhanced and stabilized electron emission from the silicon coated CNTs with a turn-on field of 2 V/ÎŒm at an emission current density of 1 ÎŒA/ cm 2. The structure and electron emission properties of the functionalized emitters are discussed

    Pumping in quantum dots and non-Abelian matrix Berry phases

    Full text link
    We have investigated pumping in quantum dots from the perspective of non-Abelian (matrix) Berry phases by solving the time dependent Schr{\"o}dinger equation exactly for adiabatic changes. Our results demonstrate that a pumped charge is related to the presence of a finite matrix Berry phase. When consecutive adiabatic cycles are performed the pumped charge of each cycle is different from the previous ones

    The first direct search for inelastic boosted dark matter with COSINE-100

    Get PDF
    A search for inelastic boosted dark matter (IBDM) using the COSINE-100 detector with 59.5 days of data is presented. This relativistic dark matter is theorized to interact with the target material through inelastic scattering with electrons, creating a heavier state that subsequently produces standard model particles, such as an electron-positron pair. In this study, we search for this electron-positron pair in coincidence with the initially scattered electron as a signature for an IBDM interaction. No excess over the predicted background event rate is observed. Therefore, we present limits on IBDM interactions under various hypotheses, one of which allows us to explore an area of the dark photon parameter space that has not yet been covered by other experiments. This is the first experimental search for IBDM using a terrestrial detector

    A search for solar axion induced signals with COSINE-100

    Get PDF
    We present results from a search for solar axions with the COSINE-100 detector. We find no evidence of solar axion events from a data set of 6,303.9 kg⋅days exposure and set a 90\,\% confidence level upper limit on the axion-electron coupling, gae, at 1.70~×~10−11 for an axion mass less than 1\,keV/c2. This limit excludes QCD axions heavier than 0.59\,eV/c2 in the DFSZ model and 168.1\,eV/c2 in the KSVZ model

    Comparison between DAMA/LIBRA and COSINE-100 in the light of quenching factors

    Get PDF
    There is a long standing debate about whether or not the annual modulation signal reported by the DAMA/LIBRA collaboration is induced by Weakly Interacting Massive Particles (WIMP) in the galaxy's dark matter halo scattering from nuclides in their NaI(Tl) crystal target/detector. This is because regions of WIMP-mass vs. WIMP-nucleon cross-section parameter space that can accommodate the DAMA/LIBRA-phase1 modulation signal in the context of the standard WIMP dark matter galactic halo and isospin-conserving (canonical), spin-independent (SI) WIMP-nucleon interactions have been excluded by many of other dark matter search experiments including COSINE-100, which uses the same NaI(Tl) target/detector material. Moreover, the recently released DAMA/LIBRA-phase2 results are inconsistent with an interpretation as WIMP-nuclide scattering via the canonical SI interaction and prefer, instead, isospin-violating or spin-dependent interactions. Dark matter interpretations of the DAMA/LIBRA signal are sensitive to the NaI(Tl) scintillation efficiency for nuclear recoils, which is characterized by so-called quenching factors (QF), and the QF values used in previous studies differ significantly from recently reported measurements, which may have led to incorrect interpretations of the DAMA/LIBRA signal. In this article, the compatibility of the DAMA/LIBRA and COSINE-100 results, in light of the new QF measurements is examined for different possible types of WIMP-nucleon interactions. The resulting allowed parameter space regions associated with the DAMA/LIBRA signal are explicitly compared with 90% confidence level upper limits from the initial 59.5 day COSINE-100 exposure. With the newly measured QF values, the allowed 3σ regions from the DAMA/LIBRA data are still generally excluded by the COSINE-100 data

    Study of cosmogenic radionuclides in the COSINE-100 NaI(Tl) detectors

    Get PDF
    COSINE-100 is a direct detection dark matter search experiment that uses a 106 kg array of eight NaI(Tl) crystals that are kept underground at the Yangyang Underground Laboratory to avoid cosmogenic activation of radioisotopes by cosmic rays. Even though the cosmogenic activity is declining with time, there are still significant background rates from the remnant nuclides. In this paper, we report measurements of cosmogenic isotope contaminations with less than one year half-lives that are based on extrapolations of the time dependent activities of their characteristic energy peaks to activity rates at the time the crystals were deployed underground. For longer-lived 109Cd (T1/2=1.6 y) and 22Na (T1/2=2.6 y), we investigate time correlations and coincidence events due to several emissions. The inferred sea-level production rates are compared with calculations based on the ACTIVIA and MENDL-2 model calculations and experimental data. The results from different approaches are in reasonable agreement with each other. For 3H, which has a long, 12.3 year half-life, we evaluated the activity levels and the exposure times that are in reasonable agreement with the time period estimated for each crystal’s exposure

    Background modeling for dark matter search with 1.7 years of COSINE-100 data

    Get PDF
    We present a background model for dark matter searches using an array of NaI(Tl) crystals in the COSINE-100 experiment that is located in the Yangyang underground laboratory. The model includes background contributions from both internal and external sources, including cosmogenic radionuclides and surface 210Pb contamination. To build the model in the low energy region, with a threshold of 1 keV, we used a depth profile of 210Pb contamination in the surface of the NaI(Tl) crystals determined in a comparison between measured and simulated spectra. We also considered the effect of the energy scale errors propagated from the statistical uncertainties and the nonlinear detector response at low energies. The 1.7 years COSINE-100 data taken between October 21, 2016 and July 18, 2018 were used for this analysis. Our Monte Carlo simulation provides a non-Gaussian peak around 50 keV originating from beta decays of bulk 210Pb in a good agreement with the measured background. This model estimates that the activities of bulk 210Pb and 3H are dominating the background rate that amounts to an average level of 2.85±0.15 counts/day/keV/kg in the energy region of (1-6) keV, using COSINE-100 data with a total exposure of 97.7 kg⋅years

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
    • 

    corecore