87 research outputs found

    Comments on `` Black Hole Entropy from Conformal Field Theory in Any Dimension ''

    Full text link
    In a recent letter, Carlip proposed a generalization of the Brown-Henneaux-Strominger construction to any dimension. We present two criticisms about his formulation.Comment: 4 pages, Enriched version for the accepted one (Phys. Rev. Lett.

    Entropy in the Kerr-Newman Black Hole

    Get PDF
    Entropy of the Kerr-Newman black hole is calculated via the brick wall method with maintaining careful attention to the contribution of superradiant scalar modes. It turns out that the nonsuperradinat and superradiant modes simultaneously contribute to the entropy with the same order in terms of the brick wall cutoff ϵ\epsilon. In particular, the contribution of the superradiant modes to the entropy is negative. To avoid divergency in this method when the angular velocity tends to zero, we propose to intr oduce a lower bound of angular velocity and to treat the case of the angular momentum per unit mass a=0a=0 separately. Moreover, from the lower bound of the angular velocity, we obtain the θ\theta-dependence structure of the brick wall cutoff, which natu rally requires an angular cutoff δ\delta. Finally, if the cutoff values, ϵ\epsilon and δ\delta, satisfy a proper relation between them, the resulting entropy satisfies the area law.Comment: 16 pages, Latex, no figures, References are included, Subsection A and B are reduced to subsection A, Abstract is rewritten, Minor corrections are include

    Electrical and Structural Analysis of CNT-Metal Contacts in Via Interconnects

    Get PDF
    Vertically aligned carbon nanotubes grown by plasmaenhanced chemical vapor deposition offer a potentially suitable material for via interconnects in next-generation integrated circuits. Key performance-limiting factors include high contact resistance and low carbon nanotube packing density, which fall short of meeting the requirements delineated in the ITRS roadmap for interconnects. For individual carbon nanotube s, contact resistance is a major performance hurdle since it is the dominant component of carbon nanotube interconnect resistance, even in the case of vertically aligned carbon nanotube arrays. In this study, we correlate the carbon nanotube-metal interface nanostructure to their electrical properties in order to elucidate growth parameters that can lead to high density and low contact resistance and resistivity

    Carbon Nanotube-on-Graphene Heterostructures

    Get PDF
    This paper presents a brief review of experimental and theoretical studies on a three-dimensional heterostructure consisting of vertical carbon nanotubes (CNTs) connected perpendicularly to a graphene layer. This structure can serve as a potential building block for an all-carbon network in energy storage devices and on-chip interconnects. The review highlights reported works on the fabrication and characterization of such a heterostructure, with focus on the effect of the CNT-graphene interface on electrical conduction. While a direct comparison between experiment and theory is not possible at this time, a brief survey of theoretical efforts based on atomic cluster models nonetheless reveals important knowledge about the electronic transport properties of this all-carbon heterostructure

    Duality of Quasilocal Black Hole Thermodynamics

    Get PDF
    We consider T-duality of the quasilocal black hole thermodynamics for the three-dimensional low energy effective string theory. Quasilocal thermodynamic variables in the first law are explicitly calculated on a general axisymmetric three-dimensional black hole solution and corresponding dual one. Physical meaning of the dual invariance of the black hole entropy is considered in terms of the Euclidean path integral formulation.Comment: 19 pages, Latex, no figures, to be published in Class. Quantum Grav. Some minor changes, references adde

    Rectifying interphases for preventing Li dendrite propagation in solid-state electrolytes

    Get PDF
    Solid-state electrolytes have emerged as the grail for safe and energy-dense Li metal batteries but still face significant challenges of Li dendrite propagation and interfacial incompatibility. In this work, an interface engineering approach is applied to introduce an electronic rectifying interphase between the solid-state electrolyte and Li metal anode. The rectifying behaviour restrains electron infiltration into the electrolyte, resulting in effective dendrite reduction. This interphase consists of a p-Si/n-TiO2 junction and an external Al layer, created using a multi-step sputter deposition technique on the surface of garnet pellets. The electronic rectifying behaviour is investigated via the asymmetric I-V responses of on-chip devices and further confirmed via the one-order of magnitude lower current response by electronic conductivity measurements on the pellets. The Al layer contributes to interface compatibility, which is verified from the lithiophilic surface and reduced interfacial impedance. Electrochemical measurements via Li symmetric cells show a significantly improved lifetime from dozens of hours to over two months. The reduction of the Li dendrite propagation behaviour is observed through 3D reconstructed morphologies of the solid-state electrolyte by X-ray computed tomography

    Enhanced Immunogenicity of Engineered HER2 Antigens Potentiates Antitumor Immune Responses

    Get PDF
    For cancer vaccines, the selection of optimal tumor-associated antigens (TAAs) that can maximize the immunogenicity of the vaccine without causing unwanted adverse effects is challenging. In this study, we developed two engineered Human epidermal growth factor receptor 2 (HER2) antigens, K965 and K1117, and compared their immunogenicity to a previously reported truncated HER2 antigen, K684, within a B cell and monocyte-based vaccine (BVAC). We found that BVAC-K965 and BVAC-K1117 induced comparable antigen-specific antibody responses and antigen-specific T cell responses to BVAC-K684. Interestingly, BVAC-K1117 induced more potent antitumor activity than the other vaccines in murine CT26-HER2 tumor models. In addition, BVAC-K1117 showed enhanced antitumor effects against truncated p95HER2-expressing CT26 tumors compared to BVAC-K965 and BVAC-K684 based on the survival analysis by inducing T cell responses against intracellular domain (ICD) epitopes. The increased ICD epitope-specific T cell responses induced by BVAC-K1117 compared to BVAC-K965 and BVAC-K684 were recapitulated in human leukocyte antigen (HLA)-untyped human PBMCs and HLA-A*0201 PBMCs. Furthermore, we also observed synergistic antitumor effects between BVAC-K1117 and anti-PD-L1 antibody treatment against CT26-HER2 tumors. Collectively, our findings demonstrate that inclusion of a sufficient number of ICD epitopes of HER2 in cellular vaccines can improve the antitumor activity of the vaccine and provide a way to optimize the efficacy of anticancer cellular vaccines targeting HER2.Y
    corecore