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Abstract: For cancer vaccines, the selection of optimal tumor-associated antigens (TAAs) that can
maximize the immunogenicity of the vaccine without causing unwanted adverse effects is challenging.
In this study, we developed two engineered Human epidermal growth factor receptor 2 (HER?2)
antigens, K965 and K1117, and compared their immunogenicity to a previously reported truncated
HER? antigen, K684, within a B cell and monocyte-based vaccine (BVAC). We found that BVAC-K965
and BVAC-K1117 induced comparable antigen-specific antibody responses and antigen-specific T cell
responses to BVAC-K684. Interestingly, BVAC-K1117 induced more potent antitumor activity than
the other vaccines in murine CT26-HER2 tumor models. In addition, BVAC-K1117 showed enhanced
antitumor effects against truncated p9SHER2-expressing CT26 tumors compared to BVAC-K965 and
BVAC-K684 based on the survival analysis by inducing T cell responses against intracellular domain
(ICD) epitopes. The increased ICD epitope-specific T cell responses induced by BVAC-K1117 compared
to BVAC-K965 and BVAC-K684 were recapitulated in human leukocyte antigen (HLA)-untyped
human PBMCs and HLA-A*0201 PBMCs. Furthermore, we also observed synergistic antitumor effects
between BVAC-K1117 and anti-PD-L1 antibody treatment against CT26-HER2 tumors. Collectively,
our findings demonstrate that inclusion of a sufficient number of ICD epitopes of HER?2 in cellular
vaccines can improve the antitumor activity of the vaccine and provide a way to optimize the efficacy
of anticancer cellular vaccines targeting HER2.
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1. Introduction

The vaccine platform using dendritic cells (DCs) as antigen-presenting cells (APCs) has been
developed and well established for the treatment of cancer in both preclinical and clinical studies [1-5].
However, due to the limited supply of DCs in peripheral blood [6] and the difficulty of ex vivo
expansion [3], there is an urgent need to develop an alternative to DCs for APC-based cancer vaccines.
In this regard, we developed a novel cancer vaccine platform, BVAC, that includes B cells and monocytes
as an alternative APC source [7-11]. Compared to DCs, B cells and monocytes are abundant in the
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peripheral blood and are easy to manipulate. Although B cells and monocytes are less efficient as
APCs than DCs [7,9], the addition of the natural killer T (NKT) cell ligand x-galactosylceramide («GC)
improved the function of B cells and monocytes as APCs through the bidirectional activation between
NKT cells and B cells/monocytes. Moreover, introducing tumor-associated antigens through adenoviral
vector systems further improved the APC function of BVAC [11].

When developing therapeutic cancer vaccines, selecting the optimal form of tumor-associated
antigens (TAAs), ranging from a single precise epitope to a full-length antigen, is crucial to elicit
potent antitumor activity without causing unwanted tissue damage [12-14]. One of the advantages of
full-length antigens is epitope diversity. The wide epitope coverage provided by full-length antigen
could activate not only CD8" T cells but also CD4" T cells. In addition, full-length antigens are relatively
free from issues regarding human leukocyte antigen (HLA) haplotype matches of individual patients.
Furthermore, vaccines containing multiple epitope peptides or whole antigens showed enhanced
therapeutic efficacy in various animal studies compared with single epitope peptides [12,15,16]. Thus,
extending the diversity of epitopes is potentially beneficial to the therapeutic efficacy of cancer vaccines.

Human epidermal growth factor receptor 2 (HER2) is one of the best-characterized TAAs in
various tumors, including breast, ovarian, and gastric cancers [17,18]. HER2 has a highly oncogenic
property due to its continuous signal transduction via mitogen-activated protein kinases (MAPK) and
the phosphoinositide 3-kinase (PI3K)-activated Akt pathways [19]. In addition, among the naturally
occurring noncanonical forms of the HER2 antigen, p95SHER2, which lacks a large portion of the
extracellular domain (ECD), has been associated with tumor relapse, metastasis, and the acquisition
of resistance to therapeutic antibodies [20-23]. As the expression of p95HER?2 is mostly restricted to
tumor tissues [24-26], diverting immune responses toward p95SHER?2 might be a promising strategy
to treat p95HER2-positive cancer patients. In our previous study, BVAC with a truncated form of
HER?2 antigen spanning a 684-amino acid length (K684) induced HER2-specific T cell responses [11].
However, since K684 only includes the extracellular domain (ECD) and transmembrane domain
(TM) and the kinase domain in the intracellular domain (ICD) region has oncogenic potential [27,28],
including an additional ICD region with exclusion or inactivation of the kinase domain is crucial to
enable targeting p95HER2.

To introduce ICD in the BVAC without activating the kinase domain, we developed two novel
BVACs, BVAC-K965 and BVAC-K1117, containing engineered forms of HER2 antigens, and compared
their immunogenicity and therapeutic efficacy with the previously developed BVAC-K684. All three
vaccines induced comparable humoral and T cell responses against the ECD. Interestingly, vaccination
with BVAC-K1117 had increased antitumor effects against HER2- or p95HER2-expressing CT26 tumors
than the other vaccines by inducing T cell responses against epitopes located in the ICD region.
Furthermore, by using human PBMCs from HLA-undefined or HLA-A*0201 donors, we observed that
BVAC-K1117 induced superior T cell responses compared to the other formulations. Finally, we also
found that the combination of BVAC-K1117 and anti-PD-L1 antibody showed enhanced inhibition
of tumor growth compared to each monotherapy. Overall, our study provides a novel strategy to
optimize the efficacy of cancer vaccines targeting HER2.

2. Materials and Methods

2.1. Mice

Female 6-week-old BALB/c mice were purchased from Charles River Laboratories (Seoul, Korea).
All mice were housed in specific pathogen-free conditions in the Animal Center for Pharmaceutical
Research at Seoul National University (Seoul, Korea). The experiments were approved by the
International Animal Care and Use Committee (IACUC) of Seoul National University.
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2.2. Human Samples

Human peripheral blood mononuclear cells (PBMCs) were obtained from healthy donors in
compliance with Institutional Review Board protocols, and informed consent was granted by all donors.
The collection of human samples and all human experiments were performed in accordance with
the principles of the Helsinki Declaration and approved by the ethical committee of Seoul National
University and Seoul National University Bundang Hospital (IRB No. 1712/001-003).

2.3. Tumor Cell Lines

CT26/HER2, CT26/p95HER?2, and WEHI-164 cells were cultured in DF10 medium that was DMEM
media supplemented with 10% FBS and 1% penicillin-streptomycin. Human monocytic cell line
THP-1 was cultured in RPMI media supplemented with 10% FBS and 1% penicillin-streptomycin.
HER2-expressing CT26/HER2 cells were previously developed by transduction of CT26 cells with cDNA
encoding human HER?2 [29]. Briefly, CT26 wild-type cell line were transduced with MoMuLV-based
retroviral vector, including the cDNA for HER2/neu and the neomycin resistance gene under the
control of the SV40 promoter. The p95HER2 was amplified with polymerase chain reaction using
specific primers (p95HER2for: 5'-ACTAGTAAACTACCCCAAGCTGGCCTCTGAGGCCACCATGC
CCATCTGGAAGTTT-3/, and p95HER2rev: 5 -ACTAGTTTGATCCCCAAGCTTGGCCTGACA
GGCCTCACACTGGCACGTCCAGACC-3") and inserted into pSBbi-Hyg. The cloned vector
pSBbi-p9SHER2-Hyg were transduced into CT26 wild-type cell line with pCMV(CAT)T7-SB100
for integration of SB transposons at TA-dinucleotides of genomic DNA [30]. CT26/HER2 cells and
CT26/p95HER? cells were subcloned and maintained in DF10 supplemented with 200 pg/mL Geneticin
(Gibco), and 100 pg/mL hygromycin B (InvivoGen), respectively. Tumor cell lines were validated by
morphology, growth kinetics, and antigen expression.

For in vivo transplantation, 2 x 10° CT26/HER2 or CT26/p95HER?2 cells per mouse were
subcutaneously (s.c.) injected into the left flanks of female BALB/c mice. For in vivo survival
analysis, 5 x 10° or 1 x 10° cells of CT26/HER2 or 5 x 10° cells of CT26/p95HER2 cells per mouse
were injected into the tail vein. For combination therapy, 5 x 10> CT26/HER?2 cells were used, and
monoclonal anti-PD-L1 antibody was used 5 days after BVAC administration. The rates of survival and
tumor growth was measured using a metric caliper three times a week. Tumor volume was calculated
as 0.5236 x length x width X height.

2.4. Reagent and Antibodies

The fluorochrome-conjugated antibodies to mouse B220 FITC (RA3-6B2), mouse PD-L1 FITC
(10E.9G2), mouse CD3 PE (17A2), mouse CD11b PE (M1/70), mouse CD8 APC (53-6.7), human HER2
APC (24D2), mouse IgG1 PE (RMG1-1), human CD20 FITC (2H7), and human CD14 PE (M5E2)
were purchased from BioLegend. FITC conjugated anti-mouse PD-1 (J43) and PE/Cy7 conjugated
anti-mouse interferon-y (XMG1.2) were purchased from Invitrogen and fixable viability dye eFluor
450 and eFluor 780 were purchased from eBioscience. The antibodies to mouse CD45.2 BV786 (104)
were purchased from BD Bioscience. All microbeads for B cell and monocyte isolation (anti-mouse
B220, anti-mouse CD11b, anti-human CD3, anti-human CD19, and anti-human CD14) were purchased
from Miltenyi Biotec. The monoclonal anti-PD-L1 antibody (MIH5) was generated as described
previously [31,32] and prepared from the ascites of nude mice by using caprylic acid purification. ICD
peptide pools produced as 15-mers with 8 aa overlap and 9-mer P63 peptides (TYLPTNASL) were
purchased from Anygen (Gwangju, Korea) for in vivo and in vitro cytotoxicity, and P396 (KIFGSLAFL),
P435 (ILHNGAYSL), P689 (RLLQETELV), and P971 (LQRYSEDPT) for human ELISPOT assay were
purchased from Cosmogenetech (Daejeon, Korea). Alpha-galactosylceramide was purchased from
Enzo Life Science.
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2.5. Generation of Modified HER2 Antigens and Adenoviral Vectors

Modified HER2 antigens were generated by PCR from HER2 wild-type (GenelD
2064) DNA. To generate modified HER2 antigens, HER2 antigens were amplified
by specific primers (HF1: 5-TTGAGTCGACATGGAGCTGGCGGCCTTGT-3’, HF2:
5'-AAGCTTCACACTGGCACGTCCAGAC-3’, HF3: 5-CATATGAGGTGTCAGCGGCTCCACC-3,
HF4: 5'-CATATGGGCC CAGCCAGTCCCT T T-3’, HF5: 5'-TTGACATATGGGAGCCCACACCAGCC-3/,
HF6: 5'-CATATGGCCAAACCTTACGA TGGGATCCC-3’) and using HER2-WT plasmid as a template,
which was gifted from Mien-Chie Hung (Addgene plasmid # 16257; http://n2t.net/addgene:16257;
RRID: Addgene_16257) [33]. The pairs of primers were the front (HF1 to HF4) and the back (HF3
to HF2) for K965 and the front (HF1 to HF6) and the back (HF5 to HF2) for K1117. All amplified
PCR products were inserted into TA cloning vectors (Biofact) and ligated after Ndel and HindIII
restriction enzyme digestion. TA cloning vectors carrying HER2 antigens were digested by Sall and
HindIIl, and the fragmented HER2 antigens were inserted into the same restriction enzyme site of the
pShuttle-CMV-tet10 (Genexine) vector. The generation of adenoviral vectors carrying modified HER2
antigens was conducted by inducing homologous recombination with pShuttle-CMV-Ag-tet10 in the
Escherichia. coli strain BJ5183 (Agilent) carrying E1/E3-deleted and modified AdK35Easy adenoviral
vector plasmid. These recombinant plasmids were transfected into human embryonic kidney 293 cells
to generate virus particles. The purification of amplified adenoviruses was conducted with an AdenoX
maxi purification kit (TAKARA) or FPLC with column affinity chromatography.

2.6. Preparation of BVAC

Splenocytes were isolated from BALB/c mice. After eliminating RBCs using ACK lysing buffer
(Gibco), B220* cells were isolated using anti-B220 MACS beads. After B220* cells were purified,
CD11b* cells were isolated using anti-CD11b MACS beads. Isolated B220* cells and CD11b* cells were
transduced with adenoviral vectors at the indicated multiplicity of infection (MOI) by centrifugation
for 90 min at 2000 r.p.m at room temperature, and the cells were subsequently supplemented with
1 pg/mL «GC and incubated for an additional 18 h. After incubation, BVAC was injected into naive or
tumor-bearing mice via the tail vein.

2.7. Titration of HER2-Specific Antibodies

For titration of HER2-specific antibodies, CT26/HER?2 cells were opsonized with serially diluted
sera from immunized mice and washed with PBS. After opsonization, CT26/HER?2 cells were stained
with PE-conjugated anti-mouse IgG1 antibody (RMG1-1) and analyzed using flow cytometry.

2.8. In Vivo and In Vitro Cytotoxicity Assay

For the in vivo cytotoxicity assay, mice were vaccinated with BVAC with 2 x 10° cells. Seven
days after vaccination, target cells were prepared from naive splenocytes loaded with 1 png/mL target
peptides and subsequently labeled with 5 uM CFSE (Invitrogen). Syngeneic splenocytes labeled with
0.5 uM CFSE were used as an internal control. Equal amounts of target cells and internal control cells
were injected intravenously (i.v.) into BVAC-treated mice. The mice were sacrificed at 18 h post target
cell injection, and epitope-specific target cell lysis was analyzed by FACS. The specific cell lysis was
calculated as follows: r (ratio) = (% CFSE!°W/% CFSEN8h), % lysis = [1—(runprimed /pprimed)] 5 10,

For the in vitro cytotoxic assay, mice were vaccinated with BVAC with 2 x 10° cells. Seven days
after vaccination, 2 x 107 splenocytes were cocultured with mitomycin-C (Sigma-Aldrich)-treated
5 x 10° CT26/HER2 or CT26/p95HER2 cells. After 5 days, CD8* T cells were isolated from cocultured
splenocytes with anti-CD8 MACS beads. The target cells were WEHI-164 cells that were loaded
with target epitopes (2 pug/mL) for 4 h and subsequently labeled with 5!Cr. Target epitope-loaded
51Cr-labeled WEHI-164 tumor cells were cocultured with CD8* T cells for 4 h. The specific cell lysis was
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analyzed by Wallac 1470 Wizard automatic y-counter (Perkin Elmer) measuring °!Cr in the supernatant.
Specific lysis (%) was calculated as follows:

% lysis = [(experimental release-spontaneous release)/(maximum release-spontaneous release)] x 100 (1)

2.9. Immunospot Analysis

For immunospot analysis, 1 X 10° «GC-loaded adenovirus-transduced human CD3" PBMCs were
cocultured with 1 x 10® autologous PBMCs in chemically defined X-vivo 15 (Lonza) media. The media
was substituted with media supplemented with IL-2 (5 ng/mL) and IL-15 (5 ng/mL) on days 3 and 7.
At the end of coculture, CD8* and CD4* T cells were isolated from cocultured PBMCs using magnetic
beads and seeded on human interferon-gamma (IFN-y) ELISPOT plates (Cellular Technology Ltd.,
Cleveland, OH, USA) for the indicated peptide restimulation.

2.10. Statistics

The data are shown as the means + s.e.m., and statistical significance was analyzed with GraphPad
Prism software. A two-tailed Student’s t-test was used to compare differences between two groups.
Both one-way and two-way analysis of variance were used to compare differences among multiple
groups. p-values < 0.05 were considered statistically significant.

3. Results

3.1. Development of Adenoviral Vectors Coding for Engineered HER2 Antigens

To address whether insertion of the ICD region can improve the immunogenicity of the HER2
antigen, we designed two novel HER? antigens that contain the ICD region. Since the tyrosine kinase
domain in the ICD region (a.a. 720-976) has been associated with oncogenic potential, it was disrupted
by removing a.a. 703-994 or a.a. 780-919 [34], resulting in K965 or K1117, which were named based
on the total antigen length (Figure 1A,B). The adenoviral vectors (Ad) carrying the engineered HER2
antigens were constructed by restriction enzyme cloning and homologous recombination using the
BJ5183 E. coli strain [35]. Then, the virus particles produced and amplified in the HEK293R cell
line were purified by affinity chromatography. To evaluate the vector-induced expression of HER?2,
we transduced AdK684, AdK965, or AdK1117 an MOI of 100 into THP-1 human monocytic cells.
After 24 h, the expression of HER2 was analyzed by flow cytometry (Figure 1C). All three vectors
efficiently induced HER?2 expression in THP-1 cells, while the mean fluorescence intensity (MFI) of
HER?2 expression in AdK684 cells was higher than that in the other two cells within the live population
(Figure S1). Consistent with the results observed in THP-1 cells, adenoviral vectors containing the
engineered HER?2 antigens efficiently induced HER2 expression in primary human CD20* B cells
and CD14+ monocytes and murine B cells (Figure 1D,E and Figure S2). In addition, we tested the
attenuation of HER? signaling by analysis of phosphorylated Erk. We transduced THP-1 cells with
indicated adenovirus at an MOI of 20, and the cytoplasmic proteins were analyzed by immunoblot 24 h
after virus transduction. As a result, each adenovirus transduced THP-1 cell line showed attenuation
of the phosphorylation of Erk compared to the AAHER2WT cell line (Figure S3).

3.2. Immunization with the Engineered Antigens Elicits HER2-Specific Humoral and Cellular Immune
Responses

Next, we tested whether the engineered antigens induce HER2-specific immune responses. To this
end, we transduced each engineered HER2 antigen-expressing vector into NKT cell ligand-loaded
B cell and monocyte vaccine (BVAC) as previously demonstrated. After immunizing BALB/c mice
with each BVAC expressing a different form of the HER2 antigen, HER2-specific antibody titers
in the sera at different time points after immunization were determined by a binding assay using
HER?2-expressing CT26 (CT26/HER2) tumor cells (Figure 2A,B). We observed a gradual increase in the
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titers of HER2-specific antibodies in all three tested HER2-expressing BVAC immunization groups.
By contrast, vector transduction of BVAC without HER2 (Bmo/xGC) did not induce HER2-specific
antibody responses, suggesting that the antibody responses were induced by the HER2 antigens
expressed on BVAC. The antibody titers peaked approximately 9-11 weeks after immunization and
then decreased thereafter. Of note, BVAC-K1117 was less efficient in inducing antibody responses than

the other two vaccines.
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Figure 1. The development of three different engineered human epidermal growth factor receptor 2
(HER?2) antigens. (A) Diagram of the concept of engineered HER antigens based on the extracellular
domain, transmembrane domain, and intracellular domain. (B) The gel image of each antigen. The K684,
K965, or K1117 (from left to right, respectively) construct was inserted into an adenovirus shuttle vector
and digested with restriction enzymes Sall and HindIII. The expression of engineered HER2 antigens on
the THP-1 (C) and CD14+ monocytes (D) and CD20+ B cells (E) isolated from human peripheral blood
(D) was analyzed by flow cytometry. All data are representative of two independent experiments.
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Figure 2. The analysis of the antibody response in the sera of vaccinated mice. (A,B) Naive BALB/c
mice were immunized with B cell and monocyte-based vaccine transduced by modified adenovirus
carrying each antigen. One, 5, 7, 9, 11, and 13 weeks after immunization, antibodies in the mouse sera
were titrated by flow cytometry (* p < 0.05, ** p < 0.01, *** p < 0.001 for K684 versus K1117, ## p < 0.001,
for K965 versus K1117). In vitro and in vivo cytotoxic T lymphocyte (CTL) analysis. Naive BALB/c mice
were immunized with B cell and monocyte-based vaccine transduced by modified adenovirus carrying
each antigen. The splenocytes from immunized mice were co-cultured with attenuated CT26/HER2 cell
lines on day 7. After 5 days CD8+ T cells were sorted by microbeads and cocultured with 3! Cr-labeled
P63 target peptide-loaded WEHI-164 cells (C). For in vivo CTL analysis, naive BALB/c mice were
immunized with B cell and monocyte-based vaccine transduced by modified adenovirus carrying each
antigen. HER2 P63 peptide-loaded target cells and unloaded internal control cells labeled with CFSE
high and low, respectively, were injected into immunized mice. One day after target cell injection, all
mice were sacrificed, and specific cell lysis was analyzed with flow cytometry (D). (* p < 0.05,** p <0.01,
***p < 0.001).

Using the H2-Kd binding P63 peptide, which is located in the ECD region [36], we examined
the cellular immune responses of each engineered antigen against HER2. To determine P63-specific
cytotoxicity, splenocytes isolated from immunized mice were stimulated with the mitomycin-C-treated
CT26/HER2 tumor cell line for 5 days and then subjected to a ' Cr release assay using P63-specific
peptides (Figure 2C). All three BVACs expressing HER2 antigen induced potent target cell killing
activity in comparison to BVAC without HER2 expression and BVAC-K965 was the most potent.
In addition, to assess the cytotoxic effect in vivo, we immunized mice with each BVAC and then injected
CFSEM-labeled P63 peptide-loaded splenocytes together with CFSE!°-labeled peptide-unloaded control
splenocytes 1 week after immunization. Similar to in vitro analysis, all three BVACs expressing HER2
antigen induced potent target cell killing activity in vivo compared to BVAC without HER2 expression
but BVAC-K965 was the most potent (Figure 2D). Collectively, these results suggest that HER2 antigens
containing the ICD region without the tyrosine kinase domain can induce potent humoral and cytotoxic
immune responses.
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3.3. BVAC with the K1117 Antigen Efficiently Inhibits the Growth of HER2-Expressing Tumors

We next tested the antitumor effect of BVACs expressing engineered HER2 antigens in mouse
tumor models. Naive BALB/c mice were inoculated with CT26/HER2 tumor cells and then treated
with each BVAC at day 6 (Figure 3A). Consistent with the comparable antibody titers and CTL
responses, BVAC-K965 inhibited tumor growth as efficiently as BVAC-K684. Unexpectedly, we
observed that the antitumor effect of BVAC-K1117 was indistinguishable from that of BVAC-K684 and
BVAC-K965 despite the relatively poor capacity to induce antibody responses or cytotoxic responses
(Figure 2). The tendency of the antitumor effect of engineered antigens was found in the survival
analysis (Figure 3B). To further evaluate the therapeutic effect of BVACs expressing engineered HER2
antigens, we tested a multiple injection regimen in the same CT26/HER2 tumor model (Figure 3C).
Intriguingly, we observed a significant delay in tumor growth with BVAC-K1117 vaccination compared
to BVAC-K684 or BVAC-K965 vaccination. Notably, as dead cells could be an immune stimulator
causing incorrect interpretation of the observed results, we analyzed the live and dead cell populations
of BVAC. The percentage of dead BVAC-K1117 cells was significantly lower than that of the K684 and
Bmo/aGC (Figure S4). These results indicated that dead BVAC cells did not affect antitumor responses.
Taken together, these results suggest that the engineered antigen K1117 would be better than K684 and
K965 at inducing antitumor immune responses.
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Figure 3. Therapeutic effects in mouse tumor models. A total of 2 x 10° HER2-expressing CT26
tumor cells were subcutaneously injected into naive BALB/c mice and immunized with B cell and
monocyte-based vaccines (BVACs) carrying the indicating engineered antigens (A). (B) A total of
1 x 10® CT26/HER2 tumor cells were injected into tail vein of naive BALB/c mice. On day 3, tumor
bearing mice were immunized with BVACs carrying the indicating engineered antigens and survival
time was monitored. (C) CT26/HER2 tumor-bearing mice were administered BVACs with engineered
antigens four times when the tumor size reached 80 mm3. All statistical analyses were compared to
K1117. Subcutaneous tumor models are representative of two independent experiments (* p < 0.05,
***p <0.001, n.s. p > 0.05).

3.4. BVAC-K1117 Induces Antigen-Specific Cytotoxic Responses Against ICD of HER2

As BVAC-K1117 showed the most potent antitumor effect among the three BVACs, we hypothesized
that the epitopes located in the ICD region of K1117 played a crucial role in eliciting superior
antitumor responses. When the 15-mer ICD epitope peptide pool-loaded target cells were adoptively
transferred into vaccinated mice, BVAC-K1117 showed a higher target killing effect than BVAC-K684
and BVAC-K965 (Figure 4A). To compare the antitumor response against the ICD region of HER2, we
established a p95SHER2-expressing CT26 cell line (CT26/p95HER?2) that lacks the majority of the ECD
region of HER2, including the P63 epitope. We inoculated CT26/p95HER2 cells into naive BALB/c
mice and then vaccinated the mice with each BVAC on day 6. Compared to control BVAC (Bmo/xGC),
BVAC-K965 and BVAC-K1117 significantly delayed tumor growth, whereas tumor regression was
minimal in the BVAC-K684 group (Figure 4B). However, in contrast to the CT26/p95HER2 tumor
growth of subcutaneous models, the survival of intravenously inoculated CT26/p95HER2 bearing
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mice indicated that BVAC-K1117 is superior to BVAC with other antigens (Figure 4C). These data
were consistent with the target killing effect against the ICD region of HER?2 (Figure 4A). In addition,
we sought to investigate whether supplementation with ICD epitope peptides can improve the
antitumor effect of BVAC-K684 against CT26/p95HER2 tumors. As we expected, BVAC-K684 pulsed
with ICD peptide pools (BVAC-K684'P) elicited a significantly enhanced therapeutic effect against
CT26/p95HER?2 tumors compared to BVAC-K684 alone (Figure 4D). Collectively, these results suggest

that inclusion of the ICD region of HER2 improves the antitumor effect of BVAC by promoting
ICD-specific immune responses.
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Figure 4. The function of epitopes located in the intracellular domain (ICD) of HER2. Naive BALB/c
mice were immunized with BVACs coding for each engineered antigen. On day 8, splenocytes from
naive BALB/c mice were pulsed with the HER2 ICD 15 mer peptide pool and labeled with CFSEigh.
Peptide loaded CFSEM8! labeled splenocytes were injected into immunized mice with the same number
of peptide unloaded CFSE!®" labeled splenocytes as an internal control. One day after target cell
injection, all mice were sacrificed, and specific cell lysis was analyzed with flow cytometry (A). A total
of 2 x 10° CT26/p95HER?2 tumor cells were injected into the left flanks of naive mice and tumor-bearing
mice were immunized with BVACs as indicated (B). A total of 5 x 10° CT26/p95HER?2 tumor cells were
injected into tail vein of naive BALB/c mice. One day after tumor inoculation, tumor bearing mice were
immunized with BVACs carrying the indicating engineered antigens and survival time was monitored
(C). (D) The same as (B), 2 x 10° CT26/p95HER?2 were inoculated into the left flanks of naive mice and
administrated BVAC with indicated conditions. All statistical analyses were compared to K1117. All
data are representative of at least three independent experiments except survival analysis (** p < 0.01,
***p <0.001, n.s. p > 0.05).
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3.5. Engineered HER2 Antigens Enhance HER2-Specific T Cell Responses in Human PBMC Models

To extend our findings to the clinical application of HER2 targeting BVAC, we investigated the
immunogenicity of engineered HER2 antigens in HLA un-typed human PBMCs. We cocultured
PBMCs with autologous BVACs expressing each engineered HER2 antigen under IL-2 plus IL-15
conditions (Figure 5A). After 7 days of culture, we sorted CD8" and CD4* cells from cocultured
PBMCs and restimulated them with CD3-depleted PBMCs loaded with pooled HER2 epitope peptides.
Interestingly, we found that human PBMCs primed with BVAC-K1117 induced the highest immune
responses, as estimated by the increased number of IFN-y* spots from cocultured CD8" as well as
CD4* T cells (Figure 5B-D).
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Figure 5. Human T cell responses against HER2. Human PBMCs from human leukocyte antigen (HLA)
undefined donors were cocultured with autologous BVACs with engineered antigens (A). After 7 days,
the CD8 and CD4 T cells were sorted from cocultured PBMCs and restimulated with a total HER2
peptide pool, and IFN-y production was measured with an ELISPOT assay (B-D). (E) Human PBMCs
carrying HLA-A*0201 were obtained by leukapheresis from a healthy donor and cocultured with
autologous BVACs with engineered antigens. After 11 days, the CD8 T cells isolated from cocultured
PBMCs were restimulated with HER2 HLA-A*0201-restricted extracellular domain (ECD) or ICD
9-mer peptides (F,G), respectively, CD4 T cells were restimulated with the ECD or ICD 15-mer peptide
pool, and then IFN-y secretion was measured with ELISPOT assay (H,I), respectively. All data are
representative of three independent experiments (* p < 0.05, ** p < 0.01, ** p < 0.001).

We next tested whether BVAC with engineered HER2 antigens could elicit immune responses
specific to MHC class I-restricted epitopes located either in the ECD or ICD. We obtained peripheral
blood from healthy donor carrying HLA-A*0201, and the PBMCs were cocultured with autologous
BVAC. As depicted in Figure 5E, CD8" T cells and CD4* T cells sorted from cocultured PBMCs
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were restimulated with peptide-loaded autologous CD3" PBMCs 11 days after coculture. We used
HLA-A2-restricted ECD 9-mer peptides (P369 and P435) and ICD 9-mer peptides (P689 and P971) for
CD8* T cell restimulation [37,38] and pooled 15-mer ECD peptides or pooled 15-mer ICD peptides for
CD4* T cell restimulation. Notably, BVAC-K1117 induced more HER2-specific IEN-y* CD8* T cells
against ICD peptides and ECD peptides than BVAC-K684 and BVAC-K965 (Figure SEG). In addition,
BVAC-K1117 was superior to BVAC-K684 and BVAC-K965 at inducing ICD-specific IFN-y production
by CD4* T cells, although it could not increase the number of ECD-specific [IFN-y* CD4* T cells
compared to the control (Figure 5H,I). Collectively, these results suggest that BVAC-K1117 can efficiently
induce ICD-specific CD4* and CD8* T cell responses in HLA-defined and HLA-undefined PBMCs.

3.6. The Combination of Anti-PD-L1 Therapy with BVAC-K1117 Augments Antitumor Immunity in Murine
Tumor Models

Therapies targeting the PD-1/PD-L1 pathway, such as anti-PD-1 and anti-PD-L1 antibodies,
have proven remarkable therapeutic efficacy against cancer in the clinic. Thus, we tested whether
BVAC-K1117 can synergistically enhance the therapeutic efficacy of anti-PD-L1 antibody in a CT26/HER2
tumor model. As shown in Figure 6A, BALB/c mice inoculated with CT26/HER?2 cells were treated
starting from day 5 after tumor injection. After multiple treatments with either BVAC or anti-PD-L1
antibody, tumor growth was mitigated compared to that in control IgG-treated mice (Figure 6B). Since
the vaccination with BVAC-K1117 dramatically induced IFN-y expression on tumor-infiltrating CD8 T
cells (Figure S5A—C) and the IFN-y produced by tumor-infiltrating CD8 T cells is a potential inducer
of PD-L1 expression on tumor cells [39], we hypothesized that IFN-y-dependent induction of PD-L1
expression on tumor cells contributed to the additive anti-tumor effect of anti-PD-L1 in BVAC-K1117
vaccinated mice. To test this hypothesis, we examined PD-L1 expression on tumor after BVAC-K1117
vaccination. Although the IFN-y production in tumor-infiltrating CD8 T cells was considerably
increased by BVAC-K1117 vaccination compared to without vaccination or Bmo/aGC vaccination,
PD-L1 expression on tumor cells was not significantly changed by the BVAC-K1117 vaccination
(Figure S5D,E), suggesting that enhanced anti-tumor effect by the addition of anti-PD-L1 was not
due to IFN-y-dependent induction of PD-L1 expression on tumor cells by BVAC-K1117 vaccination.
Taken together, these results suggest that anti-PD-L1 treatment can potentiate the antitumor effect
of BVAC-K1117.
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Figure 6. The effect of the combination of BVAC-K1117 with anti-PD-L1 antibody therapy on CT26/HER2
tumor-bearing mice. We inoculated 5 X 10° CT26/HER2 cells into naive BALB/c mice, and vaccinated
the mice with the indicated therapy on days 5 and 10 for the first cycle and on days 20 and 25 for
the second cycle (A,B). The dose per treatment of BVAC was 2 x 106 cells per mouse and anti-PD-L1
antibody (MIH5) was 300 pg per mouse. All data are representative of two independent experiments
(***p < 0.001).
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4. Discussion

The advantages of using the whole antigen covering total antigenic epitopes rather than using the
truncated antigen encompassing specific immunogenic epitopes in the cancer vaccine platform has
been documented in preclinical and clinical studies [1-5]. However, in the case of HER2-targeting
cancer vaccines, the oncogenic potential of HER2 has been one of the major impediments to whole
antigen utilization. In this report, we designed two novel truncated HER2 antigens containing multiple
immunogenic epitopes in the ICD region as well as in the ECD region to potentiate its immunogenicity
while excluding kinase domain in the ICD region to attenuate its oncogenic potential.

Highly oncogenic signal transduction of HER2 is initiated by autophosphorylation of the
cytoplasmic domain after homo or heterodimerization with other human epithelial receptor family
members or estrogen receptors [28,40]. As autophosphorylation has a crucial role in oncogenic
signaling, a mutated HER2 whose ATP-binding lysine residue was substituted with alanine (K753A),
was developed and tested for safety and therapeutic relevance [41,42]. Although the single amino acid
substitution significantly improved the therapeutic potential of the HER2 antigen without inducing
oncogenic signaling, safety concerns remain presumably due to the random reactivation of kinase
function [42]. Thus, it is important to ensure the irreversible inactivation of the kinase domain in the
HER?2 antigen to avoid potential safety concerns. In this study, we observed that inclusion of a large
portion of ICD region of HER?2 antigen that contains several immunogenic epitopes but not the kinase
domain in the cellular cancer vaccine improved the antitumor effect of the vaccine without a significant
induction of Erk phosphorylation, one of the indicators of oncogenic HER2 signaling.

Earlier studies suggested that cellular vaccination with whole antigen transduced by viral vectors
results in an increased immune response compared to that with a single peptide [12,43]. As the
whole protein antigen might include multiple CD4+ T cell epitopes as well as CD8* T cell epitopes,
overall immune responses would be enhanced by using whole antigen. In the present study, we
compared the therapeutic effects of engineered antigens to demonstrate the importance of the presence
of multiple epitopes. Comparison of tumor antigen-specific immune responses revealed that K1117,
which contained more ICD regions than K965 and K684, elicited the superior antitumor effect and
immunogenicity in mice and human PBMCs, respectively, to the other two antigens. Furthermore,
supplementation with ICD epitopes dramatically improved the antitumor activity of BVAC-K684.
Therefore, our data indicate that inclusion of multiple antigenic epitopes in the vaccine platform is
more required to attain optimal antitumor immune responses.

Given the importance of tumor-specific antibodies in antitumor therapies [44], we hypothesized
that induction of humoral responses is essential to effectively control tumor progression. Unexpectedly,
however, despite the induction of potent antitumor activity, BVAC-K1117 vaccination induced less
antitumor antibody responses than BVAC-K684 vaccination. Considering that ICD-specific CD8* T
cell responses as well as ICD-specific CD4* T cell responses were higher with BVAC-K1117 vaccination
than with BVAC-K684 vaccination, inducing ICD-specific T cell responses would be more important to
promote antitumor responses than eliciting tumor antigen-specific antibody secretion at least in our
HER?2-specific tumor models. However, since tumor antigen-specific antibodies can contribute to the
antitumor effect in several different ways, such as antibody-dependent cytotoxicity and phagocytosis
of opsonized tumor cells [45], we do not rule out the potential involvement of HER2-specific antibodies
in the antitumor effect of BVAC-K1117.

Immune checkpoint blockade targeting PD-1 or PD-L1 has been developed to reinvigorate the
function of exhausted T cells and has shown successful clinical outcomes [46,47]. However, it has been
reported that only a subset of patients benefited from checkpoint blockade therapy in the clinic. As the
pre-existing tumor specific T cells in the tumor site might be required for the patients’ responsiveness
to checkpoint blockade [48-50], boosting tumor antigen-specific immune responses prior to checkpoint
blockade has shown clinical benefits [51]. In addition, it has been reported that the increased T cell
receptor (TCR) diversity of peripheral PD-1*CD8™ T cells before treatment in patients with non-small
cell lung cancer was associated with better clinical outcome in checkpoint blockade therapy [52]. Thus,
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induction of diverse tumor-specific CD8" T cells is necessary to overcome refractoriness to checkpoint
inhibitors. Here, we observed that BVAC-K1117 vaccination that can induce diverse tumor-specific
CD8* T cells against ICD epitopes as well as ECD epitopes of the HER2 antigen showed enhanced
antitumor effects when combined with anti-PD-L1 checkpoint blockade therapy. Therefore, inclusion
of multiple epitopes, including ICD-specific epitopes, in HER2 antigen might improve the efficacy of
anti-HER?2 cancer vaccines as a combination therapy for checkpoint blockade.

Although it has been reported that expression of HER2 in normal tissues is less significant than
that in cancers [53], potential of normal tissue damage induced by anti-HER2 immunotherapy has
been documented. For example, HER2 blocking antibodies combined with chemotherapy induced
cardiotoxicity in metastatic breast cancer [54,55]. In addition, chimeric antigen receptor T cell (CART)
therapies targeting HER? elicited serious on-target, off-tumor adverse events [56]. In contrast, clinical
trials of DC-based vaccines suggested that cellular vaccines expressing HER2 antigen could be
well-tolerated without causing severe adverse effects [57]. Although we tested the antitumor effect of
BVAC expressing human HER2 in human HER2-expressing mouse colon cancer tumor models, we did
not observe any behavioral changes in mice after BVAC-HER2 vaccinations. Given that the degree
of homology between human and mouse HER?2 is extremely high (88% identical to each other) [58]
and that vaccination with human HER?2 antigen, K684, expressing DC vaccine induced mouse tumor
models in our previous study [59], we speculate that the normal tissue damage induced by BVAC-HER2
vaccination might be minimal even in HER2* cancer patients.

In summary, our study demonstrated that engineering HER2 antigens in a cellular vaccine
platform to include a majority of the ICD region except the tyrosine kinase domain improved the
antitumor effect of the vaccine while relieving the safety concerns regarding the oncogenic potential of
this HER2 in humans. Our findings provide insight into the development of optimal tumor antigens
for cellular cancer vaccines.

5. Conclusions

In this study, we developed two novel HER2 antigens, K965 and K1117, that are engineered to
include multiple immunogenic epitopes but not oncogenic kinase domain in the ICD region. Within a
previously described B cell based cellular cancer vaccine platform, the immunogenicity and anti-tumor
effect of these engineered antigens were evaluated by comparing previously described truncated HER2
antigen, K684, that contains limited immunogenic epitopes. Although BVAC-K1117 that encompasses
more immunogenic epitopes located in the ICD regions than BVAC-K684 and BVAC-K965 induced
relatively weak antigen-specific antibody responses, it induced more potent antitumor activity than
the other two vaccines in murine CT26/HER2 tumor models. In addition, due to the T cell responses
specific to ICD epitopes, BVAC-K1117 showed enhanced antitumor effects against non-canonical HER2
(p95HER?2) expressing CT26 tumors compared to BVAC-K684. BVAC-K1117 also showed superior
tumor antigen-specific T cell responses compared to BVAC-K684 and BVAC-K965 in human PBMCs
from HLA undefined and HLA-A*0201 donors. Furthermore, enhanced antitumor effect was observed
by combination of BVAC-K1117 with anti-PD-L1 antibody treatment against CT26-HER2 tumors.
Collectively, the overall evaluation indicates that expression of a large portion of ICD domain of HER2
except the kinase domain in the anti-HER2 cellular cancer vaccines guarantees antitumor potency but
minimizes the safety concerns of the vaccines.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-393X/8/3/403/s1,
Figure S1: The expression of HER2 on THP-1 and phosphorylation of HER2 signaling molecules, Figure S2:
The expression of HER2 on mouse B cells and monocytes, Figure S3: The phosphorylation of Erk on the engineered
HER? transduced THP-1, Figure S4: The live population of mouse BVAC, Figure S5: The expression of PD-L1 on
tumor cells and the secretion of INF-y by CD8+ T cells.
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