11 research outputs found

    Immunocytes as a Biocarrier to Delivery Therapeutic and Imaging Contrast Agents to Tumors

    Get PDF
    Radiotherapy for cancer treatment has been used for primary or adjuvant treatment in many types of cancer, and approximately half of all cancer patients are undergoing radiation. However, ionizing radiation exposure induces genetic alterations in cancer cells and results in recruitment of monocytes/macrophages by triggering signals released from these cells. Using this characteristic of monocytes/macrophages, we have attempted to develop a biocarrier loading radiosensitizing anticancer agents that can lead to enhance the therapeutic effect of radiation in cancer treatment. The aim of this study is to demonstrate the proof of this concept. THP-1 labeled with Qdot 800 or iron oxide (IO) effectively migrated into tumors of subcutaneous mouse model and increased recruitment after ionizing radiation. Functionalized liposomes carrying a radiosensitizing anticancer agent, doxorubicin, are successfully loaded in THP-1 (THP-1-LP-Dox) with reduced cytotoxicity, and THP-1-LP-Dox also was observed in tumors after intravenous administration. Here, we report that monocytes/macrophages as a biocarrier can be used as a selective tool for amplification of the therapeutic effects on radiotherapy for human cancer treatment

    High Doses of Caffeine during the Peripubertal Period in the Rat Impair the Growth and Function of the Testis

    Get PDF
    Prenatal caffeine exposure adversely affects the development of the reproductive organs of male rat offspring. Thus, it is conceivable that peripubertal caffeine exposure would also influence physiologic gonadal changes and function during this critical period for sexual maturation. This study investigated the impact of high doses of caffeine on the testes of prepubertal male rats. A total of 45 immature male rats were divided randomly into three groups: a control group and 2 groups fed 120 and 180 mg/kg/day of caffeine, respectively, via the stomach for 4 weeks. Caffeine caused a significant decrease in body weight gain, accompanied by proportional decreases in lean body mass and body fat. The caffeine-fed animals had smaller and lighter testes than those of the control that were accompanied by negative influences on the histologic parameters of the testes. In addition, stimulated-testosterone ex vivo production was reduced in Leydig cells retrieved from the caffeine-fed animals. Our results demonstrate that peripubertal caffeine consumption can interfere with the maturation and function of the testis, possibly by interrupting endogenous testosterone secretion and reducing the sensitivity of Leydig cells to gonadotrophic stimulation. In addition, we confirmed that pubertal administration of caffeine reduced testis growth and altered testis histomorphology

    Coxsackievirus B3 infection reduces female mouse fertility

    No full text

    Enhancement of Radiotherapeutic Efficacy by Paclitaxel-Loaded pH-Sensitive Block Copolymer Micelles

    No full text
    Radiotherapy (RT) is a major modality for cancer treatment, but its efficacy is often compromised by the resistance caused by tumor-specific microenvironment including acidosis and hypoxia. For an effective RT, concurrent administration of radiosensitizer with RT has been emphasized. However, most anticancer agents enhancing radiotherapeutic efficacy have obstacles such as poor solubility and severe toxicity. Paclitaxel (PTX), a well-known radiosensitizer, is insoluble in water and needs toxic solvent like Cremophor EL. Nanomaterials in drug delivery systems have been utilized for improving the drawbacks of anti-cancer drugs. Solubilization, tumor accumulation, and toxicity attenuation of drug by nanomaterials are suitable for enhancement of radiotherapeutic efficacy. In this study, PTX was incorporated into pH-sensitive block copolymer micelle (psm-PTX), polyethylene glycol-graft-poly(ÎČ-amino ester), and preclinically evaluated for its effect on RT. The size of psm-PTX was 125.7±4.4 nm at pH 7.4. psm-PTX released PTX rapidly in the acidic condition (pH 6.5), while it was reasonably stable in the physiologic condition (pH 7.4). The clonogenic assay showed that psm-PTX greatly sensitized human non-small-cell lung cancer A549 cells to radiation. In the xenograft tumor model, the combination of psm-PTX and radiation significantly delayed the tumor growth. These results demonstrated the feasibility of psm-PTX to enhance the chemoradiotherapeutic efficacy

    Immunocytes as a Biocarrier to Delivery Therapeutic and Imaging Contrast Agents to Tumors

    No full text
    Radiotherapy for cancer treatment has been used for primary or adjuvant treatment in many types of cancer, and approximately half of all cancer patients are undergoing radiation. However, ionizing radiation exposure induces genetic alterations in cancer cells and results in recruitment of monocytes/macrophages by triggering signals released from these cells. Using this characteristic of monocytes/macrophages, we have attempted to develop a biocarrier loading radiosensitizing anticancer agents that can lead to enhance the therapeutic effect of radiation in cancer treatment. The aim of this study is to demonstrate the proof of this concept. THP-1 labeled with Qdot 800 or iron oxide (IO) effectively migrated into tumors of subcutaneous mouse model and increased recruitment after ionizing radiation. Functionalized liposomes carrying a radiosensitizing anticancer agent, doxorubicin, are successfully loaded in THP-1 (THP-1-LP-Dox) with reduced cytotoxicity, and THP-1-LP-Dox also was observed in tumors after intravenous administration. Here, we report that monocytes/macrophages as a biocarrier can be used as a selective tool for amplification of the therapeutic effects on radiotherapy for human cancer treatment

    SAR Studies of Indole-5-propanoic Acid Derivatives To Develop Novel GPR40 Agonists

    No full text
    G-protein coupled receptor 40 (GPR40) has been considered to be an attractive drug target for the treatment of type 2 diabetes because of its role in free fatty acids-mediated enhancement of glucose-stimulated insulin secretion (GSIS) from pancreatic ÎČ-cells. A series of indole-5-propanoic acid compounds were synthesized, and their GPR40 agonistic activities were evaluated by nuclear factor of activated T-cells reporter assay and GSIS assay in the MIN-6 insulinoma cells. Three compounds, <b>8h</b> (EC<sub>50</sub> = 58.6 nM), <b>8i</b> (EC<sub>50</sub> = 37.8 nM), and <b>8o</b> (EC<sub>50</sub> = 9.4 nM), were identified as potent GPR40 agonists with good GSIS effects

    Near-infrared narrow-band imaging of gold/silica nanoshells in tumors

    No full text
    textGold nanoshells (GNS) are a new class of nanoparticles that can be optically tuned to scatter or absorb light from the near-ultraviolet to near-infrared (NIR) region by varying the core (dielectric silica) /shell (gold) ratio. In addition to spectral tunability, GNS are inert and bioconjugatable making them potential labels for in vivo imaging and therapy of tumors. We report the use of GNS as exogenous contrast agents for enhanced visualization of tumors using narrow band imaging (NBI). NBI takes advantage of the strong NIR absorption of GNS to distinguish between blood and nanoshells in the tumor by imaging in narrow wavelength bands in the visible and NIR, respectively. Using tissue-simulating phantoms, we determined the optimum wavelengths to enhance contrast between blood and GNS. We then used the optimum wavelengths for ex-vivo imaging of tumors extracted from human colon cancer xenograft bearing mice injected with GNS. Systemically delivered GNS accumulated passively in tumor xenografts by enhanced permeability and retention (EPR) effect. Ex-Vivo NBI of tumor xenografts demonstrated tumor specific heterogeneous distribution of GNS with a clear distinction from the tumor vasculature. The results of the present study demonstrate the feasibility of using GNS as contrast agents to visualize tumor tissues using NBI technique.Biomedical Engineerin
    corecore