2,348 research outputs found

    4D Lorentz Electron Microscopy Imaging: Magnetic Domain Wall Nucleation, Reversal, and Wave Velocity

    Get PDF
    Magnetization reversal is an important topic of research in the fields of both basic and applied ferromagnetism. For the study of magnetization reversal dynamics and magnetic domain wall (DW) motion in ferromagnetic thin films, imaging techniques are indispensable. Here, we report 4D imaging of DWs by the out-of-focus Fresnel method in Lorentz ultrafast electron microscopy (UEM), with in situ spatial and temporal resolutions. The temporal change in magnetization, as revealed by changes in image contrast, is clocked using an impulsive optical field to produce structural deformation of the specimen, thus modulating magnetic field components in the specimen plane. Directly visualized are DW nucleation and subsequent annihilation and oscillatory reappearance (periods of 32 and 45 ns) in nickel films on two different substrates. For the case of Ni films on a Ti/Si_(3)N_4 substrate, under conditions of minimum residual external magnetic field, the oscillation is associated with a unique traveling wave train of periodic magnetization reversal. The velocity of DW propagation in this wave train is measured to be 172 m/s with a wavelength of 7.8 μm. The success of this study demonstrates the promise of Lorentz UEM for real-space imaging of spin switching, ferromagnetic resonance, and laser-induced demagnetization in ferromagnetic nanostructures

    Nonchaotic Nonlinear Motion Visualized in Complex Nanostructures by Stereographic 4D Electron Microscopy

    Get PDF
    Direct electron imaging with sufficient time resolution is a powerful tool for visualizing the three-dimensional (3D) mechanical motion and resolving the four-dimensional (4D) trajectories of many different components of a nanomachine, e.g., a NEMS device. Here, we report a nanoscale nonchaotic motion of a nano- and microstructured NiTi shape memory alloy in 4D electron microscopy. A huge amplitude oscillatory mechanical motion following laser heating is observed repetitively, likened to a 3D motion of a conductor’s baton. By time-resolved 4D stereographic reconstruction of the motion, prominent vibrational frequencies (3.0, 3.8, 6.8, and 14.5 MHz) are fully characterized, showing evidence of nonlinear behavior. Moreover, it is found that a stress (fluence)−strain (displacement) profile shows nonlinear elasticity. The observed resonances of the nanostructure are reminiscent of classical molecular quasi-periodic behavior, but here both the amplitude and frequency of the motion are visualized using ultrafast electron microscopy

    Exploring a Process Model for Stakeholder Management

    Get PDF
    This paper expands stakeholder management practice by incorporating concepts from the issues management process model. Based on Jones and Chase’s issuesprocess model, this study provides a comprehensive three-step stakeholder management process: (1) stakeholder identification and analysis, (2) development and implementation of stakeholder management strategies, and (3) stakeholder management evaluation. From a practical point of view, the stakeholder identification step helps organizations picture what types of reactions or attacks will occur in the near future. In addition, stakeholder analysis allows organizations to enlist salient stakeholders and offers a practical initiation into stakeholder management. The criteria for stakeholder identification and analysis in this model can provide practical guidelines for ongoing brainstorming drills within organizations to determine which stakeholders should be engaged. Furthermore, an organization’s stakeholder management strategies are created and selected according to stakeholder categories on the basis of types and priorities. This cyclical process can motivate organizations to continue their implementation and evaluation, which will lead to an effective and efficient issues management process that can result in the construction of a better society

    Atomic-Scale Imaging in Real and Energy Space Developed in Ultrafast Electron Microscopy

    Get PDF
    In this contribution, we report the development of ultrafast electron microscopy (UEM) with atomic-scale real-, energy-, and Fourier-space resolutions. This second-generation UEM provides images, diffraction patterns, and electron energy spectra, and here we demonstrate its potential with applications for nanostructured materials and organometallic crystals. We clearly resolve the separation between atoms in the direct images and the Bragg spots/Debye−Scherrer rings in diffraction and obtain the electronic structure and elemental energies in the electron energy loss spectra (EELS) and energy filtered transmission electron microscopy (EFTEM)

    DECAY FACTOR WITH EXPERIMENTAL VARIABLES IN TWO CIRCULATING FLUIDIZED BED (CFB) RISERS

    Get PDF
    The effects of the riser inlet velocity, solid mass flux and particle size on the axial solid holdup profile and decay factor were investigated using two circulating fluidized beds (CFBs) with FCC (Geldart A) particles as the bed materials. Based on the experimental results from the two-CFBs, the axial solid holdup in the two CFBs were compared with the correlations of previous studies. Also, an empirical correlation was proposed for decay factor that exhibited a good agreement with experimental data

    Real-space observation of short-period cubic lattice of skyrmions in MnGe

    Full text link
    Emergent phenomena and functions arising from topological electron-spin textures in real space or momentum space are attracting growing interest for new concept of states of matter as well as for possible applications to spintronics. One such example is a magnetic skyrmion, a topologically stable nanoscale spin vortex structure characterized by a topological index. Real-space regular arrays of skyrmions are described by combination of multi-directional spin helixes. Nanoscale configurations and characteristics of the two-dimensional skyrmion hexagonal-lattice have been revealed extensively by real-space observations. Other three-dimensional forms of skyrmion lattices, such as a cubic-lattice of skyrmions, are also anticipated to exist, yet their direct observations remain elusive. Here we report real-space observations of spin configurations of the skyrmion cubic-lattice in MnGe with a very short period (~3 nm) and hence endowed with the largest skyrmion number density. The skyrmion lattices parallel to the {100} atomic lattices are directly observed using Lorentz transmission electron microscopes (Lorentz TEMs). It enables the first simultaneous observation of magnetic skyrmions and underlying atomic-lattice fringes. These results indicate the emergence of skyrmion-antiskyrmion lattice in MnGe, which is a source of emergent electromagnetic responses and will open a possibility of controlling few-nanometer scale skyrmion lattices through atomic lattice modulations

    A Distributed ADMM Approach to Non-Myopic Path Planning for Multi-Target Tracking

    Full text link
    This paper investigates non-myopic path planning of mobile sensors for multi-target tracking. Such problem has posed a high computational complexity issue and/or the necessity of high-level decision making. Existing works tackle these issues by heuristically assigning targets to each sensing agent and solving the split problem for each agent. However, such heuristic methods reduce the target estimation performance in the absence of considering the changes of target state estimation along time. In this work, we detour the task-assignment problem by reformulating the general non-myopic planning problem to a distributed optimization problem with respect to targets. By combining alternating direction method of multipliers (ADMM) and local trajectory optimization method, we solve the problem and induce consensus (i.e., high-level decisions) automatically among the targets. In addition, we propose a modified receding-horizon control (RHC) scheme and edge-cutting method for efficient real-time operation. The proposed algorithm is validated through simulations in various scenarios.Comment: Copyright 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Primary segmental volvulus of the ileum mimicking meconium plug syndrome

    Get PDF
    Primary segmental volvulus (PSV) of the ileum in neonate occurs rarely but shows an aggressive clinical course. Thus, early diagnosis is important to prevent necrosis and perforation of the intestine. We report a case of PSV of the ileum in a 2-day-old female neonate whose clinical features and radiologic findings appeared to be meconium plug syndrome

    Rag GTPases are cardioprotective by regulating lysosomal function.

    Get PDF
    The Rag family proteins are Ras-like small GTPases that have a critical role in amino-acid-stimulated mTORC1 activation by recruiting mTORC1 to lysosome. Despite progress in the mechanistic understanding of Rag GTPases in mTORC1 activation, little is known about the physiological function of Rag GTPases in vivo. Here we show that loss of RagA and RagB (RagA/B) in cardiomyocytes results in hypertrophic cardiomyopathy and phenocopies lysosomal storage diseases, although mTORC1 activity is not substantially impaired in vivo. We demonstrate that despite upregulation of lysosomal protein expression by constitutive activation of the transcription factor EB (TFEB) in RagA/B knockout mouse embryonic fibroblasts, lysosomal acidification is compromised owing to decreased v-ATPase level in the lysosome fraction. Our study uncovers RagA/B GTPases as key regulators of lysosomal function and cardiac protection
    • …
    corecore