1,820 research outputs found

    Measuring Inter-DNA Potentials in Solution

    Full text link
    Interactions between short strands of DNA can be tuned from repulsive to attractive by varying solution conditions and have been quantified using small angle x-ray scattering techniques. The effective DNA interaction charge was extracted by fitting the scattering profiles with the generalized one-component method and inter-DNA Yukawa pair potentials. A significant charge is measured at low to moderate monovalent counterion concentrations, resulting in strong inter-DNA repulsion. The charge and repulsion diminish rapidly upon the addition of divalent counterions. An intriguing short range attraction is observed at surprisingly low divalent cation concentrations, ~16 mM Mg2+. Quantitative measurements of inter- DNA potentials are essential for improving models of fundamental interactions in biological systems

    Inter-DNA Attraction Mediated by Divalent Counterions

    Full text link
    Can nonspecifically bound divalent counterions induce attraction between DNA strands? Here, we present experimental evidence demonstrating attraction between short DNA strands mediated by Mg2 ions. Solution small angle x-ray scattering data collected as a function of DNA concentration enable model independent extraction of the second virial coefficient. As the [Mg2] increases, this coefficient turns from positive to negative reflecting the transition from repulsive to attractive inter-DNA interaction. This surprising observation is corroborated by independent light scattering experiments. The dependence of the observed attraction on experimental parameters including DNA length provides valuable clues to its origin

    Neuronal messenger ribonucleoprotein transport follows an aging Lévy walk

    Get PDF
    Localization of messenger ribonucleoproteins (mRNPs) plays an essential role in the regulation of gene expression for long-term memory formation and neuronal development. Knowledge concerning the nature of neuronal mRNP transport is thus crucial for understanding how mRNPs are delivered to their target synapses. Here, we report experimental and theoretical evidence that the active transport dynamics of neuronal mRNPs, which is distinct from the previously reported motor-driven transport, follows an aging Levy walk. Such nonergodic, transient superdiffusion occurs because of two competing dynamic phases: the motor-involved ballistic run and static localization of mRNPs. Our proposed Levy walk model reproduces the experimentally extracted key dynamic characteristics of mRNPs with quantitative accuracy. Moreover, the aging status of mRNP particles in an experiment is inferred from the model. This study provides a predictive theoretical model for neuronal mRNP transport and offers insight into the active target search mechanism of mRNP particles in vivo.1111sciescopu

    Unleashing the full potential of Hsp90 inhibitors as cancer therapeutics through simultaneous inactivation of Hsp90, Grp94, and TRAP1

    Get PDF
    Cancer therapeutics: Extending a drug's reach A new drug that blocks heat shock proteins (HSPs), helper proteins that are co-opted by cancer cells to promote tumor growth, shows promise for cancer treatment. Several drugs have targeted HSPs, since cancer cells are known to hijack these helper proteins to shield themselves from destruction by the body. However, the drugs have had limited success. Hye-Kyung Park and Byoung Heon Kang at Ulsan National Institutes of Science and Technology in South Korea and coworkers noticed that the drugs were not absorbed into mitochondria, a key cellular compartment, and HSPs in this compartment were therefore not being blocked. They identified a new HSP inhibitor that can reach every cellular compartment and inhibit all HSPs. Testing in mice showed that this inhibitor effectively triggered death of tumor cells, and therefore shows promise for anti-cancer therapy. The Hsp90 family proteins Hsp90, Grp94, and TRAP1 are present in the cell cytoplasm, endoplasmic reticulum, and mitochondria, respectively; all play important roles in tumorigenesis by regulating protein homeostasis in response to stress. Thus, simultaneous inhibition of all Hsp90 paralogs is a reasonable strategy for cancer therapy. However, since the existing pan-Hsp90 inhibitor does not accumulate in mitochondria, the potential anticancer activity of pan-Hsp90 inhibition has not yet been fully examined in vivo. Analysis of The Cancer Genome Atlas database revealed that all Hsp90 paralogs were upregulated in prostate cancer. Inactivation of all Hsp90 paralogs induced mitochondrial dysfunction, increased cytosolic calcium, and activated calcineurin. Active calcineurin blocked prosurvival heat shock responses upon Hsp90 inhibition by preventing nuclear translocation of HSF1. The purine scaffold derivative DN401 inhibited all Hsp90 paralogs simultaneously and showed stronger anticancer activity than other Hsp90 inhibitors. Pan-Hsp90 inhibition increased cytotoxicity and suppressed mechanisms that protect cancer cells, suggesting that it is a feasible strategy for the development of potent anticancer drugs. The mitochondria-permeable drug DN401 is a newly identified in vivo pan-Hsp90 inhibitor with potent anticancer activity

    Mono- and Trivalent Ions around DNA: A Small-Angle Scattering Study of Competition and Interactions

    Full text link
    The presence of small numbers of multivalent ions in DNA-containing solutions results in strong attractive forces between DNA strands. Despite the biological importance of this interaction, e.g., DNA condensation, its physical origin remains elusive.Wecarried out a series of experiments to probe interactions between short DNA strands as small numbers of trivalent ions are included in a solution containing DNA and monovalent ions. Using resonant (anomalous) and nonresonant small angle x-ray scattering, we coordinated measurements of the number and distribution of each ion species around the DNA with the onset of attractive forces between DNA strands. DNA-DNA interactions occur as the number of trivalent ions increases. Surprisingly good agreement is found between data and size-corrected numerical Poisson-Boltzmann predictions of ion competition for non- and weakly interacting DNAs. We also obtained an estimate for the minimum number of trivalent ions needed to initiate DNA-DNA attraction

    A New p53 Target Gene, RKIP, Is Essential for DNA Damage-Induced Cellular Senescence and Suppression of ERK Activation

    Get PDF
    Abstractp53, a strong tumor suppressor protein, is known to be involved in cellular senescence, particularly premature cellular senescence. Oncogenic stresses, such as Ras activation, can initiate p53-mediated senescence, whereas activation of the Ras-mitogen-activated protein kinase (MAPK) pathway can promote cell proliferation. These conflicting facts imply that there is a regulatory mechanism for balancing p53 and Ras-MAPK signaling. To address this, we evaluated the effects of p53 on the extracellular signal-regulated kinase (ERK) activation and found that p53 could suppress ERK activation through de novo synthesis. Through several molecular biologic analyses, we found that RKIP, an inhibitor of Raf kinase, is responsible for p53-mediated ERK suppression and senescence. Overexpression of RKIP can induce cellular senescence in several types of cell lines, including p53-deficient cells, whereas the elimination of RKIP by siRNA or forced expression of ERK blocks p53-mediated cellular senescence. These results suggested that RKIP is an essential protein for cellular senescence. Moreover, modification of the p53 serine 46 residue was critical for RKIP induction and ERK suppression as well as cellular senescence. These results indicated that RKIP is a novel p53 target gene that is responsible for p53-mediated cellular senescence and tumor suppressor protein expression

    Characterisation of Pseudomonas aeruginosa related to bovine mastitis

    Get PDF
    Pseudomonas aeruginosa is one of the causative pathogens of bovine mastitis. Most P. aeruginosa strains possess the type III secretion system (TTSS), which may increase somatic cell counts (SCCs) in milk from mastitis-affected cows. Moreover, most of P. aeruginosa cells can form biofilms, thereby reducing antibiotic efficacy. In this study, the presence and effect of TTSS-related genotypes on increase of SCCs among 122 P. aeruginosa isolates obtained from raw milk samples from mastitis-affected cows and their antibiotic susceptibility at planktonic and biofilm status were investigated. Based on the presence of TTSS-related genes a total of 82.7% of the isolates were found to harbour exoU and/or exoS genes, including the invasive (exoU-/exoS+, 69.4%), cytotoxic (exoU+/exoS-, 8.3%) and cytotoxic/invasive strains (exoU+/ exoS+, 5.0%). Milk containing exoS-positive isolates had higher SCCs than those containing exoS-negative isolates. The majority of isolates showed gentamicin, amikacin, meropenem and ciprofloxacin susceptibility at planktonic status. However, the susceptibility was decreased at the biofilm status. Based on minimum biofilm eradication concentration (MBEC)/minimum inhibitory concentration (MIC) ratios, the range of change in antibiotic susceptibility varied widely depending on the antibiotics (from ≥ 3.1-fold to ≥ 475.0-fold). In conclusion, most P. aeruginosa isolates studied here had a genotype related to increase in SCCs. The efficiency of antibiotic therapy against P. aeruginosa-related bovine mastitis could be improved by analysing both the MBEC and the MIC of isolates

    Perspective of mesenchymal transformation in glioblastoma.

    Get PDF
    Despite aggressive multimodal treatment, glioblastoma (GBM), a grade IV primary brain tumor, still portends a poor prognosis with a median overall survival of 12-16 months. The complexity of GBM treatment mainly lies in the inter- and intra-tumoral heterogeneity, which largely contributes to the treatment-refractory and recurrent nature of GBM. By paving the road towards the development of personalized medicine for GBM patients, the cancer genome atlas classification scheme of GBM into distinct transcriptional subtypes has been considered an invaluable approach to overcoming this heterogeneity. Among the identified transcriptional subtypes, the mesenchymal subtype has been found associated with more aggressive, invasive, angiogenic, hypoxic, necrotic, inflammatory, and multitherapy-resistant features than other transcriptional subtypes. Accordingly, mesenchymal GBM patients were found to exhibit worse prognosis than other subtypes when patients with high transcriptional heterogeneity were excluded. Furthermore, identification of the master mesenchymal regulators and their downstream signaling pathways has not only increased our understanding of the complex regulatory transcriptional networks of mesenchymal GBM, but also has generated a list of potent inhibitors for clinical trials. Importantly, the mesenchymal transition of GBM has been found to be tightly associated with treatment-induced phenotypic changes in recurrence. Together, these findings indicate that elucidating the governing and plastic transcriptomic natures of mesenchymal GBM is critical in order to develop novel and selective therapeutic strategies that can improve both patient care and clinical outcomes. Thus, the focus of our review will be on the recent advances in the understanding of the transcriptome of mesenchymal GBM and discuss microenvironmental, metabolic, and treatment-related factors as critical components through which the mesenchymal signature may be acquired. We also take into consideration the transcriptomic plasticity of GBM to discuss the future perspectives in employing selective therapeutic strategies against mesenchymal GBM

    Focusing Capillary Optics for Use in Solution Small-Angle X-Ray Scattering

    Full text link
    Measurements of the global conformation of macromolecules can be carried out using small-angle X-ray scattering (SAXS). Glass focusing capillaries, manufactured at the Cornell High Energy Synchrotron Source (CHESS), have been successfully employed for SAXS measurements on the heme protein cytochrome c. These capillaries provide high X-ray flux into a spot size of tens of micrometres, permitting short exposures of small-volume samples. Such a capability is ideal for use in conjunction with microfluidic mixers, where time resolution may be determined by beam size and sample volumes are kept small to facilitate mixing and conserve material
    corecore