19 research outputs found

    Mitoribosomal Deregulation Drives Senescence via TPP1-Mediated Telomere Deprotection

    No full text
    While mitochondrial bioenergetic deregulation has long been implicated in cellular senescence, its mechanistic involvement remains unclear. By leveraging diverse mitochondria-related gene expression profiles derived from two different cellular senescence models of human diploid fibroblasts, we found that the expression of mitoribosomal proteins (MRPs) was generally decreased during the early-to-middle transition prior to the exhibition of noticeable SA-β-gal activity. Suppressed expression patterns of the identified senescence-associated MRP signatures (SA-MRPs) were validated in aged human cells and rat and mouse skin tissues and in aging mouse fibroblasts at single-cell resolution. TIN2- and POT1-interaction protein (TPP1) was concurrently suppressed, which induced senescence, accompanied by telomere DNA damage. Lastly, we show that SA-MRP deregulation could be a potential upstream regulator of TPP1 suppression. Our results indicate that mitoribosomal deregulation could represent an early event initiating mitochondrial dysfunction and serve as a primary driver of cellular senescence and an upstream regulator of shelterin-mediated telomere deprotection

    Co-treatment with hepatocyte growth factor and TGF-β1 enhances migration of HaCaT cells through NADPH oxidase-dependent ROS generation

    No full text
    Wound healing requires re-epithelialization from the wound margin through keratinocyte proliferation and migration, and some growth factors are known to influence this process. In the present study, we found that the co-treatment with hapatocyte growth factor (HGF) and TGF-β1 resulted in enhanced migration of HaCaT cells compared with either growth factor alone, and that N-acetylcysteine, an antioxidant agent, was the most effective among several inhibitors tested, suggesting the involvement of reactive oxygen species (ROS). Fluorescence-activated cell sorter analysis using 2',7'-dichlorofluorescein diacetate (DCF-DA) dye showed an early (30 min) as well as a late (24 h) increase of ROS after scratch, and the increase was more prominent with the growth factor treatment. Diphenyliodonium (DPI), a potent inhibitor of NADPH oxidase, abolished the increase of ROS at 30 min, followed by the inhibition of migration, but not the late time event. More precisely, gene knockdown by shRNA for either Nox-1 or Nox-4 isozyme of gp91phox subunit of NADPH oxidase abolished both the early time ROS production and migration. However, HaCaT cell migration was not enhanced by treatment with H2O2. Collectively, co-treatment with HGF and TGF-β1 enhances keratinocyte migration, accompanied with ROS generation through NADPH oxidase, involving Nox-1 and Nox-4 isozymes

    Mid-old cells are a potential target for anti-aging interventions in the elderly

    No full text
    Abstract The biological process of aging is thought to result in part from accumulation of senescent cells in organs. However, the present study identified a subset of fibroblasts and smooth muscle cells which are the major constituents of organ stroma neither proliferative nor senescent in tissues of the elderly, which we termed “mid-old status” cells. Upregulation of pro-inflammatory genes (IL1B and SAA1) and downregulation of anti-inflammatory genes (SLIT2 and CXCL12) were detected in mid-old cells. In the stroma, SAA1 promotes development of the inflammatory microenvironment via upregulation of MMP9, which decreases the stability of epithelial cells present on the basement membrane, decreasing epithelial cell function. Remarkably, the microenvironmental change and the functional decline of mid-old cells could be reversed by a young cell-originated protein, SLIT2. Our data identify functional reversion of mid-old cells as a potential method to prevent or ameliorate aspects of aging-related tissue dysfunction

    p31(comet) Induces Cellular Senescence through p21 Accumulation and Mad2 Disruption

    No full text
    Functional suppression of spindle checkpoint protein activity results in apoptotic cell death arising from mitotic failure, Including defective spindle formation, chromosome missegregation, and premature mitotic exit. The recently identified p31(comet) protein acts as a spindle checkpoint silencer via communication with the transient Mad2 complex. In the present study, we found that p31(comet) overexpression led to two distinct phenotypic changes, cellular apoptosis and senescence. Because of a paucity of direct molecular link of spindle checkpoint to cellular senescence, however, the present report focuses on the relationship between abnormal spindle checkpoint formation and p31(comet)-induced senescence by using susceptible tumor cell lines. p31(comet)-Induced senescence was accompanied by mitotic catastrophe with massive nuclear and chromosomal abnormalities. The progression of the senescence was completely inhibited by the depletion of p21(Waf1/Clp1) and partly Inhibited by the depletion of the tumor suppressor protein p53. Notably, p21(Waf1/Clp1) depletion caused a dramatic phenotypic conversion of p31(comet)-induced senescence Into cell death through mitotic catastrophe, indicating that p21(Waf1/Clp1) major mediator of p31(comet)-induced cellular senescence. In contrast to wild-type p31(comet), overexpression of a p31 mutant lacking the Mad2 binding region did not cause senescence. Moreover, depletion of Mad2 by small interfering RNA induced senescence. Here, we show that p31(comet) Induces tumor cell senescence by mediating p21(Waf1/Clp1) accumulation and Mad2 disruption and that these effects are dependent on a direct interaction of p31(comet) with Mad2. Our results could be used to control tumor growth. (Mol Cancer Res 2009;7(3):371-82
    corecore