3,008 research outputs found
The current status of observational cosmology
Observational cosmology has indeed made very rapid progress in recent years.
The ability to quantify the universe has largely improved due to observational
constraints coming from structure formation. The transition to precision
cosmology has been spearheaded by measurements of the anisotropy in the cosmic
microwave background (CMB) over the past decade. Observations of the large
scale structure in the distribution of galaxies, high red-shift supernova, have
provided the required complementary information. We review the current status
of cosmological parameter estimates from joint analysis of CMB anisotropy and
large scale structure (LSS) data. We also sound a note of caution on
overstating the successes achieved thus far.Comment: 13 pages, 3 figures, Latex style files included, To appear in the
proceedings of ICGC-04. Minor rewording in the abstract and introductio
A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation
Zincian georgeite, an amorphous copper-zinc hydroxycarbonate, has been prepared by co-precipitation using acetate salts and ammonium carbonate. Incorporation of zinc into the georgeite phase and mild ageing conditions inhibits crystallisation into zincian malachite or aurichalcite. This zincian georgeite precursor was used to prepare a Cu/ZnO catalyst, which exhibits a superior performance to a zincian malachite derived catalyst for methanol synthesis and the low temperature water-gas shift (LTS) reaction. Furthermore, the enhanced LTS activity and stability in comparison to that of a commercial Cu/ZnO/Al2O3 catalyst, indicates that the addition of alumina as a stabiliser may not be required for the zincian georgeite derived Cu/ZnO catalyst. The enhanced performance is partly attributed to the exclusion of alkali metals from the synthesis procedure, which are known to act as catalyst poisons. The effect of residual sodium on the microstructural properties of the catalyst precursor was investigated further with preparations using sodium carbonate
Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO2 anti-solvent precipitation
Methanol synthesis using Cu/ZnO/Al2O3 catalysts is a well-established industrial process. Catalyst development is always an important factor and this has resulted in the current fully optimised commercial catalyst that is prepared by co-precipitation via hydroxycarbonate precursors. Recently, the synthesis of a CuZn hydroxycarbonate precursor, analogous to the rare mineral georgeite, was reported to produce a high activity methanol synthesis catalyst. Here we report the addition of Al 3+ , the third component found in industrial catalysts, to the zincian georgeite-derived catalyst prepared using a supercritical CO 2 anti-solvent precipitation methodology. The co-addition of an AlO(OH) sol to the Cu/Zn precursor solution was found to not disrupt the formation of the CuZn georgeite phase, while providing efficient mixing of the Al 3+ within the material. The catalyst derived from the CuZn georgeite precursor phase doped with Al 3+ showed a high level of methanol synthesis productivity, which was comparable to that of the binary CuZn georgeite derived catalyst. This material also exhibited enhanced stability during an accelerated ageing test compared to the non-Al doped zincian georgeite material. Performance was benchmarked against an industrially relevant Cu/ZnO/Al2O3 standard catalyst
Putting the âWeâ Into Wellâbeing: Using CollectivismâThemed Measures of WellâBeing Attenuates Wellâbeing's Association With Individualism
Studies repeatedly have documented that societal wellâbeing is associated with individualism. Most of these studies, however, have conceptualized/measured wellâbeing as individual life satisfactionâa type of wellâbeing that originates in Western research traditions. Drawing from the latest research on interdependent happiness and on family wellâbeing, we posit that people across cultures pursue different types of wellâbeing, and test whether more collectivismâthemed types of wellâbeing that originate in Confucian traditions also are associated with individualism. Based on data collected from 2,036 participants across 12 countries, we find support for the association between individual life satisfaction and individualism at the societal level, but show that wellâbeing's association with individualism is attenuated when some collectivismâthemed measures of wellâbeing are considered. Our article advances knowledge on the flourishing of societies by suggesting that individualism may not always be strongly linked with societal wellâbeing. Implications for public policies are signaled
Preparation of a highly active ternary Cu-Zn-Al oxide methanol synthesis catalyst by supercritical CO 2 anti-solvent precipitation
Methanol synthesis using Cu/ZnO/Al2O3 catalysts is a well-established industrial process. Catalyst development is always an important factor and this has resulted in the current fully optimised commercial catalyst that is prepared by co-precipitation via hydroxycarbonate precursors. Recently, the synthesis of a CuZn hydroxycarbonate precursor, analogous to the rare mineral georgeite, was reported to produce a high activity methanol synthesis catalyst. Here we report the addition of Al3+, the third component found in industrial catalysts, to the zincian georgeite-derived catalyst prepared using a supercritical CO2 anti-solvent precipitation methodology. The co-addition of an AlO(OH) sol to the Cu/Zn precursor solution was found to not disrupt the formation of the CuZn georgeite phase, while providing efficient mixing of the Al3+ within the material. The catalyst derived from the CuZn georgeite precursor phase doped with Al3+ showed a high level of methanol synthesis productivity, which was comparable to that of the binary CuZn georgeite derived catalyst. This material also exhibited enhanced stability during an accelerated ageing test compared to the non-Al doped zincian georgeite material. Performance was benchmarked against an industrially relevant Cu/ZnO/Al2O3 standard catalyst
Recommended from our members
Leukocyte surface biomarkers implicate deficits of innate immunity in sporadic Alzheimer\u27s disease
Introduction: Blood-based diagnostics and prognostics in sporadic Alzheimer\u27s disease (AD) are important for identifying at-risk individuals for therapeutic interventions. Methods: In three stages, a total of 34 leukocyte antigens were examined by flow cytometry immunophenotyping. Data were analyzed by logistic regression and receiver operating characteristic (ROC) analyses. Results: We identified leukocyte markers differentially expressed in the patients with AD. Pathway analysis revealed a complex network involving upregulation of complement inhibition and downregulation of cargo receptor activity and AÎČ clearance. A proposed panel including four leukocyte markers â CD11c, CD59, CD91, and CD163 â predicts patientsâ PET AÎČ status with an area under the curve (AUC) of 0.93 (0.88 to 0.97). CD163 was the top performer in preclinical models. These findings have been validated in two independent cohorts. Conclusion: Our finding of changes on peripheral leukocyte surface antigens in AD implicates the deficit in innate immunity. Leukocyte-based biomarkers prove to be both sensitive and practical for AD screening and diagnosis
Early Restrictive or Liberal Fluid Management for Sepsis-Induced Hypotension
BACKGROUND: Intravenous fluids and vasopressor agents are commonly used in early resuscitation of patients with sepsis, but comparative data for prioritizing their delivery are limited.
METHODS: In an unblinded superiority trial conducted at 60 U.S. centers, we randomly assigned patients to either a restrictive fluid strategy (prioritizing vasopressors and lower intravenous fluid volumes) or a liberal fluid strategy (prioritizing higher volumes of intravenous fluids before vasopressor use) for a 24-hour period. Randomization occurred within 4 hours after a patient met the criteria for sepsis-induced hypotension refractory to initial treatment with 1 to 3 liters of intravenous fluid. We hypothesized that all-cause mortality before discharge home by day 90 (primary outcome) would be lower with a restrictive fluid strategy than with a liberal fluid strategy. Safety was also assessed.
RESULTS: A total of 1563 patients were enrolled, with 782 assigned to the restrictive fluid group and 781 to the liberal fluid group. Resuscitation therapies that were administered during the 24-hour protocol period differed between the two groups; less intravenous fluid was administered in the restrictive fluid group than in the liberal fluid group (difference of medians, -2134 ml; 95% confidence interval [CI], -2318 to -1949), whereas the restrictive fluid group had earlier, more prevalent, and longer duration of vasopressor use. Death from any cause before discharge home by day 90 occurred in 109 patients (14.0%) in the restrictive fluid group and in 116 patients (14.9%) in the liberal fluid group (estimated difference, -0.9 percentage points; 95% CI, -4.4 to 2.6; Pâ=â0.61); 5 patients in the restrictive fluid group and 4 patients in the liberal fluid group had their data censored (lost to follow-up). The number of reported serious adverse events was similar in the two groups.
CONCLUSIONS: Among patients with sepsis-induced hypotension, the restrictive fluid strategy that was used in this trial did not result in significantly lower (or higher) mortality before discharge home by day 90 than the liberal fluid strategy. (Funded by the National Heart, Lung, and Blood Institute; CLOVERS ClinicalTrials.gov number, NCT03434028)
Black Holes in the Early Universe
The existence of massive black holes was postulated in the sixties, when the
first quasars were discovered. In the late nineties their reality was proven
beyond doubt, in the Milky way and a handful nearby galaxies. Since then,
enormous theoretical and observational efforts have been made to understand the
astrophysics of massive black holes. We have discovered that some of the most
massive black holes known, weighing billions of solar masses, powered luminous
quasars within the first billion years of the Universe. The first massive black
holes must therefore have formed around the time the first stars and galaxies
formed. Dynamical evidence also indicates that black holes with masses of
millions to billions of solar masses ordinarily dwell in the centers of today's
galaxies. Massive black holes populate galaxy centers today, and shone as
quasars in the past; the quiescent black holes that we detect now in nearby
bulges are the dormant remnants of this fiery past. In this review we report on
basic, but critical, questions regarding the cosmological significance of
massive black holes. What physical mechanisms lead to the formation of the
first massive black holes? How massive were the initial massive black hole
seeds? When and where did they form? How is the growth of black holes linked to
that of their host galaxy? Answers to most of these questions are work in
progress, in the spirit of these Reports on Progress in Physics.Comment: Reports on Progress in Physics, in pres
The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies
We performed a 4.5-month multi-instrument campaign (from radio to VHE gamma
rays) on Mrk421 between January 2009 and June 2009, which included VLBA,
F-GAMMA, GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other
instruments and collaborations. Mrk421 was found in its typical (non-flaring)
activity state, with a VHE flux of about half that of the Crab Nebula, yet the
light curves show significant variability at all wavelengths, the highest
variability being in the X-rays. We determined the power spectral densities
(PSD) at most wavelengths and found that all PSDs can be described by
power-laws without a break, and with indices consistent with pink/red-noise
behavior. We observed a harder-when-brighter behavior in the X-ray spectra and
measured a positive correlation between VHE and X-ray fluxes with zero time
lag. Such characteristics have been reported many times during flaring
activity, but here they are reported for the first time in the non-flaring
state. We also observed an overall anti-correlation between optical/UV and
X-rays extending over the duration of the campaign.
The harder-when-brighter behavior in the X-ray spectra and the measured
positive X-ray/VHE correlation during the 2009 multi-wavelength campaign
suggests that the physical processes dominating the emission during non-flaring
states have similarities with those occurring during flaring activity. In
particular, this observation supports leptonic scenarios as being responsible
for the emission of Mrk421 during non-flaring activity. Such a temporally
extended X-ray/VHE correlation is not driven by any single flaring event, and
hence is difficult to explain within the standard hadronic scenarios. The
highest variability is observed in the X-ray band, which, within the one-zone
synchrotron self-Compton scenario, indicates that the electron energy
distribution is most variable at the highest energies.Comment: Accepted for publication in A&A, 18 pages, 14 figures (v2 has a small
modification in the acknowledgments, and also corrects a typo in the field
"author" in the metadata
- âŠ