19 research outputs found
The Hanabi Challenge: A New Frontier for AI Research
From the early days of computing, games have been important testbeds for
studying how well machines can do sophisticated decision making. In recent
years, machine learning has made dramatic advances with artificial agents
reaching superhuman performance in challenge domains like Go, Atari, and some
variants of poker. As with their predecessors of chess, checkers, and
backgammon, these game domains have driven research by providing sophisticated
yet well-defined challenges for artificial intelligence practitioners. We
continue this tradition by proposing the game of Hanabi as a new challenge
domain with novel problems that arise from its combination of purely
cooperative gameplay with two to five players and imperfect information. In
particular, we argue that Hanabi elevates reasoning about the beliefs and
intentions of other agents to the foreground. We believe developing novel
techniques for such theory of mind reasoning will not only be crucial for
success in Hanabi, but also in broader collaborative efforts, especially those
with human partners. To facilitate future research, we introduce the
open-source Hanabi Learning Environment, propose an experimental framework for
the research community to evaluate algorithmic advances, and assess the
performance of current state-of-the-art techniques.Comment: 32 pages, 5 figures, In Press (Artificial Intelligence
Pre- and post-natal melatonin administration partially regulates brain oxidative stress but does not improve cognitive or histological alterations in the Ts65Dn mouse model of Down syndrome
Melatonin administered during adulthood induces beneficial effects on cognition and neuroprotection in the Ts65Dn (TS) mouse model of Down syndrome. Here, we investigated the effects of pre- and post-natal melatonin treatment on behavioral and cognitive abnormalities and on several neuromorphological alterations (hypocellularity, neurogenesis impairment and increased oxidative stress) that appear during the early developmental stages in TS mice. Pregnant TS females were orally treated with melatonin or vehicle from the time of conception until the weaning of the offspring, and the pups continued to receive the treatment from weaning until the age of 5 months. Melatonin administered during the pre- and post-natal periods did not improve the cognitive impairment of TS mice as measured by the Morris Water maze or fear conditioning tests. Histological alterations, such as decreased proliferation (Ki67+ cells) and hippocampal hypocellularity (DAPI+ cells), which are typical in TS mice, were not prevented by melatonin. However, melatonin partially regulated brain oxidative stress by modulating the activity of the primary antioxidant enzymes (superoxide dismutase in the cortex and catalase in the cortex and hippocampus) and slightly decreasing the levels of lipid peroxidation in the hippocampus of TS mice. These results show the inability of melatonin to prevent cognitive impairment in TS mice when it is administered at pre- and post-natal stages. Additionally, our findings suggest that to induce pro-cognitive effects in TS mice during the early stages of development, in addition to attenuating oxidative stress, therapies should aim to improve other altered processes, such as hippocampal neurogenesis and/or hypocellularity.This work was supported by the JĂ©rĂ´me Lejeune Foundation, the Spanish Ministry of Economy and Competitiveness (PSI2016-76194-R) and by a grant from CNPq/Brazil (proc. 2606/14-13)