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HIGHLIGHTS 

 Neuroprotective effects of melatonin at early stages were evaluated in the TS mice 

 Melatonin administered at early stages did not improve cognition in the TS mice 

 At early stages, melatonin did not increased hippocellularity in the TS mice 

 At early stages, melatonin partially regulates brain oxidative stress in the TS mice. 

 

 

mailto:ruedan@unican.es


 2 

 
ABSTRACT 

Melatonin administered during adulthood induces beneficial effects on cognition and 

neuroprotection in the Ts65Dn (TS) mouse model of Down syndrome. Here, we investigated the 

effects of pre- and post-natal melatonin treatment on behavioral and cognitive abnormalities and 

on several neuromorphological alterations (hypocellularity, neurogenesis impairment and 

increased oxidative stress) that appear during the early developmental stages in TS mice. 

Pregnant TS females were orally treated with melatonin or vehicle from the time of conception 

until the weaning of the offspring, and the pups continued to receive the treatment from weaning 

until the age of 5 months. Melatonin administered during the pre- and post-natal periods did not 

improve the cognitive impairment of TS mice as measured by the Morris Water maze or fear 

conditioning tests. Histological alterations, such as decreased proliferation (Ki67+ cells) and 

hippocampal hypocellularity (DAPI+ cells), which are typical in TS mice, were not prevented by 

melatonin. However, melatonin partially regulated brain oxidative stress by modulating the activity 

of the primary antioxidant enzymes (superoxide dismutase in the cortex and catalase in the 

cortex and hippocampus) and slightly decreasing the levels of lipid peroxidation in the 

hippocampus of TS mice. These results show the inability of melatonin to prevent cognitive 

impairment in TS mice when it is administered at pre- and post-natal stages. Additionally, our 

findings suggest that to induce pro-cognitive effects in TS mice during the early stages of 

development, in addition to attenuating oxidative stress, therapies should aim to improve other 

altered processes, such as hippocampal neurogenesis and/or hypocellularity. 

 

Key words: Down syndrome; Melatonin; Ts65Dn; Memory; Neurogenesis; Oxidative stress 

 

1. INTRODUCTION 

Ts65Dn mice (TS), the most commonly used model of Down syndrome (DS), exhibit numerous 

phenotypes similar to those found in patients with DS, including motor alterations, developmental 

delays and alterations in behavior and in different cognitive processes, such as hippocampal-

dependent learning and memory [1].  

The cognitive impairments that characterize DS individuals and TS mice have been partially 

attributed to hypocellularity within different areas of the brain, including the hippocampus, due to 
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the impairment of neurogenesis that starts during the early developmental stages [2,3] and to 

other neuromorphological (abnormal dendritic tree arborization, spine density and morphology 

and synaptic density) and electrophysiological alterations [4] that disturb synaptic plasticity and 

prevent proper brain function. 

Another mechanism that contributes to the cognitive and neuronal function deficits in DS is 

increased oxidative stress (OS) produced by the overexpression of several genes on 

chromosome 21 [5]. One of the overexpressed genes in individuals with DS and TS mice is 

SOD1/Sod1, which is responsible for the expression of superoxide dismutase (SOD), an enzyme 

that dismutates superoxide anions into hydrogen peroxide and leads to over-production and OS. 

In DS, OS is already present in the early stages of life and negatively influences neurogenesis, 

differentiation, migration, net connectivity and neuronal survival [6,7]. In the later stages of life, 

OS contributes to the age-related progression of cognitive and neuronal degeneration associated 

with DS [8].  

Melatonin is an indoleamine synthesized and secreted mainly by the pineal gland and is 

important for normal neurodevelopment [9,10]. The fetus does not produce melatonin, but 

maternal melatonin crosses the placental barrier during gestation [11]. During lactation, melatonin 

present in maternal milk [12] reaches the brains of pups [13]. Melatonin is involved in modulating 

complex processes, such as learning and memory [14], as well as stress- and anxiety-related 

behaviors [15] . Exogenous administration of melatonin exerts neuroprotective effects [16-18]. 

Melatonin also facilitates memory performance in different experimental paradigms [19-22] and 

improves cognitive deficits in mouse models of various neuropathologies [17,18,21]. All these 

effects of melatonin have been attributed, at least in part, to its antioxidant- [23] and 

neurogenesis-promoting properties [16,18].  

We previously demonstrated that chronic melatonin treatment from mid to old age improved 

spatial learning and memory and hippocampal long term potentiation (LTP) in TS mice. These 

functional benefits were associated with the prevention of cholinergic neuron degeneration and 

the attenuation of hippocampal oxidative stress [24,25] . In addition, melatonin increased the 

density of proliferating cells and differentiating neuroblasts and improved the excitatory/inhibitory 

balance in the hippocampus of TS mice [26]. Because DS can be diagnosed prenatally, and 

considering that increases in oxidative stress, impairment of neurogenesis and hypocellularity are 

initiated during neurodevelopment and play important roles in cognitive dysfunction, intervention 

during pregnancy to improve these altered phenotypes is an attractive option for ameliorating or 
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restoring the intellectual disability that characterizes DS. Given the ability of melatonin to cross 

the placental barrier and its pro-cognitive and neuroprotective effects in adult TS mice, the aim of 

the present study was to evaluate whether melatonin administered from early prenatal stages to 

adulthood could prevent or attenuate the neurodevelopmental alterations that characterize the 

brain of the TS mouse and therefore reduce their behavioral and cognitive deficits.  

 

2. EXPERIMENTAL PROCEDURES 

2.1. Animals  

This study was approved by the University of Cantabria Institutional Laboratory Animal Care and 

Use Committee and was carried out in accordance with the Declaration of Helsinki and the 

European Community Council Directive (86/609/EEC). Mice were mated, generated and 

karyotyped as previously described by Corrales et al. [24]. In all experiments, TS mice were 

compared to euploid littermates (CO).  

2.2. Housing, melatonin treatment, and experimental groups 

Mice were housed in clear Plexiglass cages (20 x 22 x 20 cm) in standard laboratory conditions, 

with a temperature of 22  2 °C, 12 h light/ dark cycle and free access to food and water. The 

light/dark cycle was inverted so that the behavioral studies were conducted during the active 

period of the mice. 

Melatonin (100 mg/L; Sigma-Aldrich, Madrid, Spain) and its diluent (vehicle) were dissolved in 

absolute ethanol and added to the drinking water at a final ethanol concentration of 0.06%.  

To assess the effects of melatonin administration during the neurodevelopmental period, TS 

females (housed individually) were administered melatonin or vehicle in the drinking water from 

the day after conception to the 21st day postpartum. The new-born TS and CO male mice were 

maintained with their mothers until weaning. Post-weaning, the offspring (housed in groups of 3-4 

animals) continued to receive the same treatment (melatonin or vehicle in the drinking water) as 

their progenitors and were karyotyped and randomly assigned to one of four experimental groups: 

TS-Mel (n=13), CO-Mel (n=13), TS-vehicle (n=13), and CO-vehicle (n=13). TS and CO mice in 

the vehicle groups received tap water containing 0.06% ethanol. The animals were treated until 

they were 16-18 weeks of age, followed by an additional 4 weeks of treatment during behavioral 

assessments. Based on an average daily water consumption rate of 5 ml/day, as estimated in 
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previous studies by us and other groups [21, 24-27], the daily dose of melatonin for each mouse 

was ~0.5 mg. 

All mice were between 4.5 and 5 months of age at the time of the behavioral assessment. The 

behavioral assessment was performed in 13 animals in each experimental group. Six animals per 

group were used to evaluate the effects of melatonin administration on oxidative stress, while 7 

animals per group were used to perform the histological studies. The experimenters were blinded 

to the genotype and pharmacological treatment throughout the entire behavioral assessment and 

the other neuromorphological experiments. 

2.3. Determination of melatonin concentration in plasma 

Plasma melatonin concentration was measured in 6 pups from each group before weaning, at 

postnatal day 17, using a melatonin ELISA kit (Cloud-Clone, Ref: CEA908Ge, TX, USA). Blood 

was collected two hours after the beginning of the light and dark phases of the daily cycle, that is, 

at 10:00 p.m. and 10:00 a.m., respectively. The collected whole blood was centrifuged for 15 min 

at 4 ºC at 1000 × g. The supernatants were collected and stored at -80 ºC until use. The 

melatonin concentration was determined (in pg/ml) in duplicates according to the guidelines 

provided by the manufacturer. 

2.4. Behavioral assays  

The most invasive tests were performed last to decrease the chances of altering the behavioral 

responses. These tests were performed in the following order: sensorimotor test, actimetry, 

rotarod, hole board, open field, elevated plus maze, Morris water maze and Contextual Fear 

Conditioning test.  

2.4.1. Spontaneous activity: actimetry. During a complete 12/12 h light/dark cycle, the daily 

variations in the animals’ spontaneous locomotor activities were assessed using the Acti-system 

II device (Panlab, Barcelona), which detects the movement of the animals through the changes in 

the magnetic field. 

2.4.2. Sensorimotor test battery. A battery of sensorimotor tests, including the visual-placing 

reflex, auditory sensitivity, the vibrissa placing reflex, equilibrium, grip strength and the prehensile 

reflex, was performed on the four groups of animals. Each parameter was measured and scored 

as previously described (for a detailed description, see [24]). 



 6 

2.4.3. Motor coordination: rotarod. Motor coordination was evaluated in a Rotarod apparatus (Ugo 

Basile; Comerio, Italy) using the protocol previously described by Corrales et al. [24]. In this test, 

we measured the latency to fall from a plastic rod that rotated during 60 seconds at different 

constant speeds (5, 20 and 40 revolutions per minute (r.p.m.)) or at progressively increasing 

speeds (acceleration cycle). 

2.4.5. Exploratory activity: hole board test. To evaluate exploratory activity and attention, we used 

the same hole board apparatus and protocol previously described by Corrales et al. [24]. The 

exploratory activity was assessed by quantifying the horizontal and vertical (rearings) activity of 

the animals, the time spent exploring each hole and the number of explorations. Attention was 

analyzed by calculating a repetition index (ABA index) of the number of explorations of recently 

explored holes.  

2.4.6. Open field. General activity and anxiety were assessed and quantified using the same 

open field apparatus and protocol described by Rueda et al. [28]. In single 5-min trials, the 

vertical (rearings) and horizontal (distance in the center and periphery) activity was videotaped 

and analyzed using the Anymaze Video Tracking System (Stoelting, Wood Dale, IL, USA).  

2.4.7. Plus maze. To analyze the motor and cognitive components of anxiety in the four groups of 

animals, we used the same protocol described by Corrales et al. [24]. During a single 5 min trial, 

the time spent in the open and closed arms, the number of arm entries, and the number of head 

dippings (HDs) and stretch attend postures (SAPs) were registered. For each animal, the trial 

was videotaped, and the distance traveled in the open and closed arms and the speed of 

movement were analyzed using the Anymaze software.  

2.4.8. Morris water maze (MWM). The MWM was used to evaluate spatial learning and memory 

using the same protocol and apparatus as previously described [24]. Powdered milk was added 

to the water to achieve opaqueness.  

Animals were tested for 12 consecutive days, including eight acquisition sessions (S1-S8; 

platform submerged 1 cm below the water level) and four cued sessions (S9-S12; platform 

visible).  

During the acquisition sessions, the platform was placed in a different location every day. Each 

session consisted of four pairs of trials, 30-45 min apart. For each trial pair, each mouse was 

randomly placed in one of four starting positions (North, South, East, West). Each trial lasted a 

maximum of 60 seconds, after which the animals were allowed to remain on the platform for 20 
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seconds to help them remember its location. To allow them to develop a spatial map of the 

environment and to learn the platform position, fixed environmental cues were visible from within 

the pool. The “between-session’’ performance analysis provides a measure of “spatial reference 

memory’’ (the ability to learn and remember a spatial map of the environment).  

During the four cued sessions, the platform was placed 1 cm above the water level, and its 

position was indicated with a flag. The experimental procedure during these trials was identical to 

the one following the acquisition sessions.  

All trials were videotaped with a camera located 2 meters above the water level. The Anymaze 

video tracking system was used to analyze the swimming trajectories, escape latencies and 

swimming speed of each animal in each trial.  

2.4.9. Contextual Fear Conditioning Test (CFC). Contextual and tone-cued fear conditioning tests 

were performed using a fear conditioning apparatus (Stoelting, Wood Dale, Il, USA) and the 

Anymaze software. The protocol described by García-Cerro et al. [29] was consistently followed. 

All mice underwent a training day, a tone-cued novel context testing day, and a contextual testing 

day. Briefly, on the first day (training day), each mouse had 3 min to explore the chamber 

(baseline activity) and then received five tone-shock pairings. The second day (tone-cued testing 

day) consisted of 3 trials of 80 s in which the mice were placed in a novel context (new visual 

cues) and a tone was presented without any shocks. On the third day, each mouse was placed in 

the same visual context as the first day without any tones or shocks for 5 min. CFC was 

evaluated by quantifying the freezing time. During sessions 2 and 3, freezing time provided a 

measure of the association between the unconditioned stimuli (shock) and the conditioned stimuli 

(tone in session 2 and context in session 3, respectively).  

2.5. Immunohistochemistry 

2.5.1. Tissue preparation. The animals were anesthetized and perfused, and their hippocampi 

were removed and processed for histology and cell counting, as previously described [26]. The 

hippocampi were coronally sliced in a cryostat (50-µm-thick sections), and 1 random section out 

of every 9 was used for the immunohistochemistry protocol. 

2.5.2. Nissl staining. To calculate the total area of the subgranular zone (SGZ) of each mouse , a 

randomly chosen series was used to perform Nissl staining. The total SGZ extension was 

measured by the standard Cavalieri method as previously described [30], using a semiautomatic 

system (ImageJ v.1.33, NIH, USA, http://rsb.info.nih.gov/ij/).  

http://rsb.info.nih.gov/ij/
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2.5.3. Cell proliferation (Ki67 immunofluorescence). Ki67 immunohistochemistry in a series of 

one-in-nine slices was performed as described by Corrales et al. [26]. Briefly, free-floating slices 

were incubated with primary antibodies (rabbit anti-Ki67 (1:750; Neo Markers, UK)) diluted in 

phosphate buffer with 0.5% Triton X-100 and 0.1% BSA (PBTBSA) for two days at 4°C. Then, the 

slices were incubated overnight at 4°C with secondary antibody (donkey anti-rabbit-Alexa Fluor 

488 (1:1,000, Molecular Probes, Eugene, OR, USA)). The sections were counterstained with 4’6-

diamidino-2-phenylindole (DAPI, Calbiochem, 1:1,000) for 10 min in 0.1 M phosphate buffer (PB) 

and mounted on gelatin-covered slides. The total number of Ki67-positive cells was counted in 

the selected sections using an optical fluorescence microscope (Zeiss Axioskop 2 plus, 40x 

objective) via the optical dissector method [31] and divided by the total area of the SGZ.  

2.5.4. Mature granule cells. Mature granule cells in the hippocampal granule cell layer (GCL) 

were counted in the series of one-in-nine sections stained with DAPI, using a previously 

described physical dissector system coupled with confocal microscopy [30]. Random numbers 

were generated to select the points at which to locate the dissectors. In each series, 6 dissectors, 

in which the frame was a square situated randomly inside the GCL, were photographed and 

analyzed using the confocal microscope (Leica SPE) and ImageJ software, respectively. The 

cells were counted with the NIH ImageJ Cell Counter in the series of confocal images. The 

number of cells was then divided by the reference volume of the dissector to obtain the number of 

cells per volume unit (cell density).  

2.6. Oxidative stress assays 

2.6.1. Sample preparation. Cortical and hippocampal samples were homogenized and processed 

following the protocol of Parisotto et al. [25]. The supernatant was used to perform all the 

biochemical determinations, which were carried out in triplicate. 

2.6.2 Antioxidant enzyme assays. All the enzymatic activities were measured as described by 

Parisotto et al. [25]. Briefly, catalase (CAT) activity was analyzed at 240 nm to quantify the 

decrease in the level of H2O2 (expressed in mmol/min/g) in a 10 mM H2O2 fresh solution. SOD 

activity (expressed in USOD/g) was quantified at 480 nm, monitoring the oxidation of epinephrine 

(pH 2.0 to pH 10.2), which produces superoxide anions and pink chromophores. Glutathione 

peroxidase (GPx, expressed in μmol/min/g) activity was determined by measuring the oxidation of 

NADPH at 340 nm. Glutathione reductase activity (GR, expressed in μmol/min/g) was analyzed 

by quantifying the oxidation of NADPH at 340 nm due to the formation of reduced glutathione 

(GSH) from its oxidized form (GSSG) via the GR present in the assay solution. Glutathione S-
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transferase (GST) activity (expressed in μmol/min/g) was measured at 340 nm using 1-chloro-

2,4-dinitrobenzene as the substrate and 0.1 M GSH.  

2.6.3. Lipid peroxidation assessment. Lipid oxidation was determined spectrophotometrically at 

535 nm via the quantification of thiobarbituric acid-reactive substances (TBARS, expressed in 

nmol/g) as described by Parisotto et al. [25].  

2.6.4. Protein carbonyls (PC). Oxidative damage caused by protein carbonylation was determined 

by measuring carbonyl absorbance at 360 nm as previously described [25] and expressed in 

nmol/mg.  

2.7. Statistical analysis 

All analyses were performed in SPSS (version 22.0, Chicago, IL, USA) for Windows. The MWM 

data from the acquisition period and rotarod latencies to fall at constant speeds were analyzed by 

MANOVAs (multiple analyses of variance) with repeated measures (RM) (`session x genotype x 

treatment’ or ‘trial x genotype x treatment´), respectively. The total home cage count activity 

performed in the actimetry test was analyzed by RM-MANOVA (`hour x genotype x treatment´). 

The rest of the behavioral, neuromorphological and OS data were analyzed using two-way 

(‘genotype x treatment’) MANOVAs. For post-hoc group comparisons, Bonferroni tests were 

performed when all groups were compared, and Student’s t-tests were performed when two 

individual groups were compared. 

 

3. RESULTS 

Table 1 shows the levels of plasma melatonin in the pups of the different groups at post-natal day 

17 during both phases of the daily cycle. MANOVA revealed that all groups of animals treated 

with or without melatonin showed elevated levels of melatonin during the dark period of the daily 

cycle regardless of the experimental group to which they belonged (MANOVA `light/dark cycle´ 

F(1,21)= 17.51, p≤0.001). Vehicle-treated TS and CO pups had undetectable plasma melatonin 

levels two hours after the beginning of the light phase. However, during the dark phase of the 

cycle, the levels were significantly increased in mice of both genotypes. As expected, the 

exogenous administration of melatonin to TS and CO mice increased the level of circulating 

melatonin in comparison to those groups that did not receive the treatment. TS and CO pups 
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treated with melatonin or vehicle did not differ in the amount of melatonin found in the plasma 

during the light or the dark phase of the cycle (Table 1). 

3.1. Melatonin treatment during pre- and post-natal stages did not affect spatial memory in 

the MWM or contextual fear conditioning in the CFC test of TS mice 

In the MWM, the four groups of mice exhibited reduced latencies to reach the platform across the 

acquisition sessions, indicating that all groups progressively learned to escape from the tank (RM 

MANOVA `session´: F(7,49)=20.01, p<0.001). TS mice exhibited impairment in spatial reference 

memory because they had more difficulties reaching the escape platform than CO mice under the 

same treatment condition during these sessions (MANOVA `genotype´: F(1,49)=135.6, p<0.001). 

Pre- and post-natal melatonin treatment did not reduce the latency to reach the platform in TS or 

CO mice during these sessions (MANOVA `treatment´: F(1,49)=1.71, p=0.19), and it therefore did 

not improve spatial memory in these animals (Fig. 1A).  

During the cued sessions, in which the platform was visible, all groups of mice showed similar 

latencies to reach the platform (MANOVA `genotype´: F(1,49)=3.2, p=0.086; `treatment´: 

F(1,49)=3.34, p=0.075; Fig. 1B). Additionally, the four groups of mice did not differ in their 

swimming speeds during the entire test (data not shown).  

In the CFC test, the TS mice exhibited a reduced percentage of freezing time, and they therefore 

showed impaired cued- (MANOVA ‘genotype’: F(1,49)=11.60; p≤0.001) and context- fear 

conditioning (MANOVA ‘genotype’: F(1,49)=4.75; p≤0.05; Fig. 2A). TS mice under both treatments 

also exhibited increased freezing latencies during the context conditioning test session (i.e., the 

time spent from the start of the test until the first freezing episode; MANOVA ‘genotype’: 

F(1,49)=5.73; p≤0.05; Fig. 2B). 

Chronic melatonin treatment did not exert any significant effect on the performance of TS or CO 

mice in either of these tests. Melatonin-treated TS mice behaved similarly to TS animals treated 

with vehicle, as they tended to spend less time freezing during the cued- (MANOVA ‘treatment’: 

F(1,49)=2.28; p=0.13) and context-conditioning sessions (F(1,49)=0.06; p=0.80), and in this last 

session, they also exhibited higher freezing latencies (F(1,49)=0.38; p=0.54) than CO mice under 

the same treatment (Fig. 2A and B). 

3.2. Melatonin did not affect sensorimotor abilities, motor coordination or spontaneous 

activity but reduced the exploratory activity of TS and CO mice 
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Table 2 shows the scores obtained for the different sensorimotor abilities tested in TS and CO 

mice after vehicle or melatonin treatment during the pre- and post-natal periods. No differences in 

vision, response to an auditory stimulus, grip strength, prehensile reflex, traction capacity and 

equilibrium on the wooden or aluminum rod were found between TS and CO mice. In addition, 

chronic melatonin treatment from conception did not affect any of the sensorimotor abilities and 

reflexes tested in TS or CO mice.  

To evaluate motor coordination in more demanding conditions, the rotarod test was used. Mice 

from the different genotypes and treatments did not differ in their latency to fall from the rotarod at 

different constant speeds (MANOVA ‘genotype’: F(1,49)=3.16; p=0.081; ‘treatment’: F(1,49)=0.096; 

p=0.75) or during the acceleration cycle (MANOVA ‘genotype’: F(1,49)=0.61; p=0.43; ‘treatment’: 

F(1,49)=0.02; p=0.88). Therefore, neither the genotype nor treatment affected the motor 

coordination of these animals (Fig. 3). 

To evaluate the effect of early melatonin administration on spontaneous locomotor activity, the 

movement of the animals was recorded in their home cages during a complete dark-light cycle of 

24 h. No differences were found between the activities displayed by the mice of both genotypes 

(MANOVA ‘genotype’: light period: F(1,49)=0.45; p=0.50; dark period: F(1,49)=3.08; p=0.09), 

indicating a normal daily rhythm. This activity was highest during the period of darkness, as befits 

nocturnal animals. Melatonin treatment during the pre- and post-natal stages did not alter the 

spontaneous locomotor activity during the dark (MANOVA ‘treatment’: F(1,49)=.451; p=0.24) or the 

light phase (MANOVA ‘treatment’: F(1,49)=0.25; p=0.61) in either TS or CO mice (Fig. 4).  

On the hole board test, which evaluates exploratory activity, no significant effect of genotype or 

treatment was found in horizontal or vertical activity (distance travelled and rearings, 

respectively). TS mice showed greater exploratory activity than CO animals because they 

performed a larger number of explorations. Melatonin treatment significantly decreased the 

number of explorations and the time that mice spent exploring holes in both genotypes, but this 

effect was higher in TS mice, which indicates that melatonin partially reduced the hyperactivity 

found in vehicle-treated mice. Furthermore, melatonin treatment decreased the ABA index 

(number of explorations of recently explored holes), suggesting an improvement in attention. 

However, this decrease in the number of repetitions was partially due to the reduction in 

exploratory behavior induced by melatonin, because when this index was corrected by relating it 

to the number of explorations (ABA/number of head dippings), the effect of melatonin on the 

number of repetitions (i.e., attention) did not reach statistical significance (Table 3).  
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3.3. Melatonin did not induce anxiety in the open field or plus maze tests in TS and CO 

mice  

To evaluate possible effects of pre- and post-natal melatonin treatment on general activity and 

anxiety, we used the open field (Fig. 5) and elevated plus maze (Fig. 6) tests. Table 4 shows the 

results of the multivariance analysis of each variable tested in both experimental paradigms.  

In the open field test, TS mice treated with either melatonin or vehicle were hyperactive compared 

to CO animals. TS mice exhibited greater horizontal activity, as they travelled a higher distance in 

the center and in the periphery of the apparatus, although no significant differences between mice 

of both genotypes were found in the number of rearings (vertical activity) performed in the 

apparatus. However, unlike the finding in the hole board test, melatonin treatment did not rescue 

the hyperactivity of TS mice and did not affect the vertical activity of either TS or CO mice (Fig. 

5A and B).  

In the elevated plus maze test, no differences were found in the motor components of anxiety 

(number of arm entries, time spent in the open arms of the maze and the time spent freezing at 

the start of the test), which were also similar for both genotypes (Fig. 6A, B and C). In addition, 

the cognitive components of anxiety were similar between TS and CO mice, as indicated by the 

lack of differences in the number of risk-associated behaviors (i.e., HDs and SAPs) performed by 

mice of both genotypes (Fig. 6D). Pre- and post-natal treatment with melatonin did not affect the 

cognitive (i.e., the number of risk assessment behaviors) or motor components of anxiety 

(number of arm entries, time spent in the open arms and freezing time). All these results indicate 

that the levels of anxiety of the TS and CO mice under both treatments did not differ in this test. 

3.4. Melatonin treatment during pre- and post-natal stages did not improve the decreased 

cell proliferation or hypocellularity found in the hippocampus of TS mice  

Figure 7A shows representative images of the immunocytochemical detection of mature granule 

neurons (DAPI+ cells) in the GCL and of proliferating cells (ki67+ cells) in the SGZ of the DG of 

TS and CO mice treated with either melatonin or vehicle. The quantitative analysis of both 

markers showed that TS mice had a significantly lower density of Ki67+ and DAPI+ cells than CO 

animals (MANOVA `genotype´: Ki67: F(1,25)=25.13, p≤0.001; DAPI: F(1,25)=40.19, p≤0.001). 

Melatonin treatment during pre- and post-natal periods did not modify the density of either 

population of cells (MANOVA `treatment´: Ki67: F(1,25)=2.97, p=0.10; DAPI: F(1,25)=0.07, p=0.78; 

Fig. 7B and C). 
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3.5. Melatonin administered at early stages partially regulated the activity of several 

antioxidant enzymes and decreased the levels of lipid peroxidation in the brains of TS 

mice  

Table 5 shows the results of the multivariance analysis of each oxidative stress marker.  

To evaluate the effects of melatonin treatment on the levels of brain oxidative damage, we 

measured the levels of PC (a marker of protein damage induced by reactive oxygen species) and 

TBARS (a marker of lipid peroxidation) in the hippocampus and cortex of the four groups of mice. 

MANOVA revealed no significant differences due to genotype in the levels of oxidized proteins 

(PC) in both brain structures of young animals. However, TS mice exhibited higher hippocampal 

levels of TBARS than CO animals, while the levels of TBARS were similar in the cortices of the 

different groups of mice. Melatonin administration did not significantly affect the levels of protein 

damage or lipid peroxidation in the brains of TS mice. However, after melatonin treatment, the 

levels of TBARS in the hippocampus of TS mice were similar to those of CO animals (p=0.60) 

(Fig. 8A and B). 

As expected, the activity of SOD1 was higher in the cortex and in the hippocampus of TS mice 

compared to CO mice. Pre- and post-natal melatonin treatment did not modify the activity of this 

enzyme in the hippocampus but normalized its levels in the cortex of TS mice (Fig. 9A). 

Because SOD action must be coordinated with CAT and GPx activity to metabolize the H2O2 

derived from SOD activity into water and oxygen, we also analyzed the activity of these 

antioxidant enzymes. CAT activity was increased in the hippocampus of TS mice treated with 

vehicle, probably to compensate for the increase the SOD1 activity. However, in this group of 

mice, the increase in SOD activity was not adequately compensated for by CAT activity in the 

cortex, because TS mice presented similar levels of CAT activity as those of CO animals. Pre- 

and post-natal treatment with melatonin decreased the levels of CAT activity in the cortices of 

mice of both genotypes and in the hippocampus of TS animals (Fig. 9B). Regarding GPx, the 

activity of this enzyme was similar in the cortex and hippocampus of the four experimental groups 

(Fig. 9C). 

GR is a central player in the conversion of GSSH to its reduced form (GSH), acting as the major 

non-enzymatic endogenous antioxidant. MANOVA showed that GR activity was decreased in the 

hippocampus but not in the cortex of TS mice compared to that of CO mice. However, post hoc 

comparisons also showed a decrease in the levels of the activity of this enzyme in the cortex of 
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vehicle-treated TS mice compared to the levels in CO mice under the same treatment. Melatonin 

treatment did not affect the activity of this enzyme in any of the studied brain structures (Fig. 9D). 

GST activity, an enzyme that participates in the detoxification of the endogenous hydroperoxides 

continuously generated through cellular lipoperoxidation processes, exhibited no significant 

differences in the cortex or hippocampus of the different groups of mice (Fig. 9E).  

 

4. DISCUSSION 

We previously reported that administration of melatonin to adult TS mice improves spatial 

learning and memory, hippocampal LTP, some neuromorphological alterations in the 

hippocampus (increases in glutamatergic transmission and density of immature neuroblasts and 

mature granular cells) and reduces neurodegeneration (decreased cholinergic neuron 

degeneration, hippocampal oxidative stress and the density of senescent cells in the 

hippocampus). In this study, we evaluated whether melatonin treatment initiated at the pre-natal 

stages is an effective neuroprotective therapy that could prevent some of these 

neuromorphological alterations that appear early in DS (increased oxidative stress, hypocellularity 

and impaired neurogenesis) and drive the cognitive deficits in adult TS mice. 

To assess the effectiveness of oral melatonin administration on early life stages in TS mice, we 

measured melatonin concentrations in the plasma of pups from the four groups. Exogenous 

melatonin administration at pre- and post-natal stages led to an increase in the levels of 

melatonin in both phases of the daily cycle and in the pups of both genotypes, demonstrating that 

the addition of melatonin to the drinking water of the dams (presumably reaching the pups 

through lactation) effectively increased the circulating levels of this indoleamine. Our previous 

study, performed in adult animals [24], confirmed that no differences in diurnal or nocturnal 

melatonin levels were observed between TS and CO pups. However, in the DS population, 

conflicting results have been described in studies analyzing endogenous melatonin 

concentrations at different ages. Whereas Uberos et al. [32] found lower plasma levels of 

melatonin in children with DS than in healthy subjects, Reiter et al. [33] reported that the circadian 

production of melatonin is preserved in individuals with DS between the ages of 3 and 55 years. 

The effects of early melatonin administration on the cognitive deficits of TS mice have been 

studied using two experimental paradigms, the MWM and the CFC test. Consistent with previous 

findings [29,34,35], TS mice exhibited poorer spatial memory in the MWM test and acoustic 
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(independent of the hippocampus) and contextual memory (hippocampus-dependent) associated 

with fear in the CFC test. These deficits are likely due to the numerous morphological and 

functional alterations in the hippocampus. In addition, TS animals also presented deficits during 

the cued-conditioning session, a cognitive process that has been traditionally attributed to the 

amygdala, a structure that seems to be unaltered in TS mice [36]. However, numerous studies 

have demonstrated that this type of conditioning also involves the integrity of the perirhinal, 

entorhinal and postrhinal cortices and the thalamus, which are also compromised in this model of 

DS [37,38].  

Early treatment with melatonin did not produce the same beneficial effects on spatial learning and 

memory in the MWM test in TS mice as those that were observed when melatonin was 

administered during adulthood [24]. This lack of beneficial effects after early melatonin treatment 

does not seem to be due to changes in motor function, because no alterations were found in 

swimming speed or in their performance during the cued sessions among the different groups of 

mice. Furthermore, melatonin did not improve acoustic or contextual memory in the TS or CO 

mice, which is consistent with the findings of Yang et al. [39] in rats. 

The lack of pro-cognitive effects following treatment with melatonin during the early stages in TS 

mice was not due to changes in daily activity or sensorimotor alterations, as suggested by the 

results obtained in the battery of motor tests, including the actimetry and rotarod tests, in which 

TS and CO animals under both treatments did not exhibit any impairment. Consistent with the 

results shown here, our research group and others have described that TS mice do not show 

impaired sensorimotor abilities [29, 35, 40, 41] or impairments in spontaneous activity [24, 34]. 

However, other studies show severe deficits in balance and motor coordination as well as 

abnormal daily behavioral rhythmicity [24, 34, 42. 43].  

Other behavioral disturbances such as attention deficits [35, 44-46] or hyperactivity in settings 

that provoke caution and lack of movement in normal animals, such as in the open-field, hole 

board and plus-maze tests, are found in the Ts65Dn mouse at different ages [24, 29, 34, 35, 41, 

43, 47] However, some studies have not found attention deficits in this model [24, 34]. In addition, 

within the same study, TS mice can be hyperactive in some experimental paradigms but not in 

others [24, 34]. This fact is mainly due to the between-subjects variability in the penetrance of 

these symptoms in Ts65Dn mice, similar to what is seen in the DS population. Another reason for 

these behavioral differences observed between studies could be the different apparatus or 

protocols used to measure a specific behavioral phenotype. In this study, TS mice did not show 
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attention deficits in the hole board and were hyperactive in both the hole board and open-field 

tests but not in the plus maze test. Chronic treatment with melatonin reduced the exploratory 

behavior of TS mice in the hole board but not in the open field test. Pierrefiche et al. [48] also 

found that melatonin reduced the exploratory behavior of animals in the hole board test. 

Thus, our results suggest the ineffectiveness of melatonin administered to TS mice during fetal 

and post-natal stages in preventing the cognitive deficits characteristic of these animals. 

Exogenous melatonin has been demonstrated to be effective in improving spatial memory during 

the later stages in many rodent models of various neuropathologies [17-19, 21]. However, its 

effect on spatial learning and memory after administration during the early stages in young 

animals is unclear. Consistent with our results, Baydas et al. [20] reported that the impact of 

melatonin in the prevention of learning and memory deficits is higher in aged animals than in 

young animals. In addition, Cao et al. [49] found deficits in spatial learning and memory in the 

MWM test after administration of melatonin to newborn rats and rats exposed to lead from 

weaning until the third month of life. Furthermore, prenatal administration of melatonin also failed 

to have any effect on the impaired performance in the MWM induced after chronic intrauterine 

hypoxia in rats [50].  

Spatial memory dysfunction is quantitatively related to hippocampal neurogenesis [51]. TS mice 

show a positive correlation between performance in the MWM and the number of newly 

generated cells during adulthood in the DG [1,52]. Melatonin administered to middle aged TS 

mice improved both spatial memory [24] and hippocampal neurogenesis [26]. In this study, we did 

not find a pro-cognitive effect or an enhancement of hippocampal neurogenesis after pre- and 

post-natal melatonin treatment in TS mice. Thus, the failure of this treatment to improve cognition 

in young TS animals may be due to its inability to rescue these neuromorphological deficits. 

The differential effects induced by melatonin on neurogenesis in TS mice depending on the time 

of administration could be explained by the many intrinsic and extrinsic factors that regulate adult 

neurogenesis [53], which could interfere with or influence the effects observed in older animals. In 

addition, melatonin also ameliorated some altered processes (cholinergic degeneration, 

increases in oxidative stress-induced damage and cellular senescence) that appear and progress 

as TS mice age, contributing to their neurodegeneration. Therefore, it is possible that the pro-

cognitive effects induced by melatonin in the old TS mice could be mainly due to the prevention of 

neurodegeneration rather than to increases in neurogenesis. In this regard, some of these 

alterations, such as cholinergic degeneration, start at 6 months of age in TS mice and progress 
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as the animals age. Thus, melatonin treatment in young mice may not be as effective as when 

administered to older animals because the TS animals used in the present study may be too 

young to exhibit these alterations and, in the case that they present these changes, these 

alterations may not be very severe at this stage. 

Because OS plays an early role in cognitive dysfunction in DS, we also examined the effects of 

pre- and post-natal melatonin treatment on the brain OS status.  

Due to an excess of gene expression, the activity of SOD was increased in the cortex and in the 

hippocampus of TS mice at 5 months of age, which may result in the accumulation of H2O2 that 

should also induce an increase in the activities of CAT and GPx. In this regard, CAT activity is 

upregulated in DS children to counteract, at least in part, the chronic enhanced H2O2 levels 

generated by the excess SOD present in cells [54,55]. CAT is a second pseudo-order enzyme 

specific for metabolizing H2O2 and maintaining the relatively low cellular generation of the hydroxyl 

radical (HO•) via the Haber-Weiss-Fenton reactions [56]. Accordingly, we observed an increase in 

CAT activity in the hippocampus but not in the cortex of TS mice. The fact that CAT activity was 

not enhanced in the cortex could result in insufficient removal of H2O2, favoring the generation of 

HO• and thereby promoting persistent OS in this structure.  In contrast to the previously observed 

enhancement in GPx activity in the cortex and hippocampus of 12-month-old TS mice [25], the 

activity of this enzyme was not increased at 5 months of age. Conflicting results have been found 

regarding the cellular responses involving GPx activity in the erythrocytes of individuals with DS. 

While Garlet et al. [54] revealed no significant differences between children with DS and normal 

controls, Pastor et al. [57] found enhanced GPx in individuals with DS between the ages of 1 and 

50 years. However, in the plasma of subjects with DS and in the brains of rats, GPx activity 

seems to increase with age due to the formation of peroxides [58-60]. Thus, it is possible that in 

the brains of TS mice, GPx activity is not increased while the animals are young, but its activity is 

probably induced by increases in SOD levels and therefore by the accumulation of H2O2 as the 

animal ages. 

The levels of GSH, the most important endogenous antioxidant, are decreased in subjects with 

DS [54,61]. Although its levels were not measured in the present study, the activity of the GST 

enzyme, which acts in xenobiotic detoxification by catalyzing the conjugation of GSH to chemical 

toxins and in the detoxification of hydroperoxides derived from lipoperoxidation [61], was 

unchanged in the cortex or the hippocampus of TS mice. However, the low activity of GR found in 

the hippocampus and cortex of TS mice compared to CO mice in the present study may impair 
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the efficient replacement of the levels of GSH, which may be an additional factor contributing to 

the exacerbation of oxidative damage in this structure. In addition to these enzymes, the redox 

system involving GSH also includes the activity of γ-glutamylcysteine synthase and glucose-6-

phosphate dehydrogenase [62], which were not measured in our study.  

An imbalance between OS and the antioxidant system produces cell damage by oxidation of 

DNA, lipids and proteins. At 12 months of age, TS animals display higher levels of TBARS and 

PC, markers of lipid peroxidation and protein damage, respectively, in the hippocampus 

compared to the levels observed in CO animals [25]. In agreement with our previous results in 

older animals and with the levels of other markers of lipid peroxidation (the t8isoPGF2α) found in 

the cortex and hippocampus of TS mice at 4 months of age [63], in the present study TS animals 

also showed increased levels of TBARS in the hippocampus but not increased levels of PC in 

either of the two brain structures. The failure to find increased PC levels in the brain may be 

because the damage to proteins requires a more extended period to develop. In fact, Tramutola 

et al. [64] found that the total levels of protein oxidation start to rise at 6 months but become 

significantly increased at 12 months of age in the TS mouse, and Zitnanová et al. [65] did not find 

altered levels of PC in the plasma of DS children.  

Melatonin decreases OS, acting as a free radical scavenger and/or regulating the endogenous 

antioxidant enzyme activities [23]. In the brains of adult TS mice, melatonin does not exert its 

antioxidant effects by regulating the antioxidant defense system [25]. At 5 months of age, pre- 

and post-natal melatonin administration partially regulated the antioxidant enzymes in the brains 

of TS mice because it diminished the activity of SOD in the cortex and the activity of CAT in both 

brain structures. However, it did not regulate the altered activity of SOD or GR in the 

hippocampus of TS animals. These differences may be due to the fact that melatonin differentially 

regulates the antioxidant enzymes depending on the basal or elevated OS levels [62]. In old TS 

mice, the main antioxidant action of this indoleamine was due to its effects as a free radical 

scavenger, normalizing the levels of protein damage and lipid peroxidation in the hippocampus of 

TS mice [25]. However, in young TS mice, it only exerted partial effects as a ROS scavenger, 

because it slightly decreased the levels of TBARS in the hippocampus. Consistent with these 

results, melatonin appeared to have different effects to prevent brain oxidative damage in young 

and in old animals and was more effective in old animals [66,67]. Melatonin administration 

resulted in differential restoration of lipid peroxidation and antioxidant enzymes in the livers of 3-, 

12- and 24-month-old rats [68]. Exogenous melatonin treatment decreased aged-induced lipid 

peroxidation (malondialdehyde) in the brain of rats and was more effective at 20 than at 4 months 
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of age [69]. Furthermore, melatonin administration reduces the age-related accumulation of 

TBARS in the plasma and homogenates of spleen and bone marrow, and its effects were also 

stronger in old than in young hamsters [70]. Therefore, melatonin may be a more efficient ROS 

scavenger as lipid peroxidation increases, which occurs in the hippocampus of TS mice as 

demonstrated by the higher levels of TBARS at 12 [25] than at 5 months of age. The fact that pre- 

and post- natal melatonin administration did not decrease SOD activity and did not completely 

restore the levels of lipid peroxidation in the hippocampus of TS animals may be partially 

responsible for the spatial learning and memory deficits that are still present in adult TS mice after 

treatment with this indoleamine. 

The discrepancies found between the effects of melatonin when it was administered during 

adulthood or during pre- and early post-natal stages to TS mice could be due to different 

mechanisms. A possible explanation might be the dose of melatonin used in each case. We 

administered the same dose of melatonin in the present study (pre- and post-natal stages) as that 

used in our previous study (adult stages: 5 to 12 months of age, [24,26]), but it may have been 

necessary to administer a different dose of melatonin in young mice to obtain the same benefits 

found in adult mice. The pharmacokinetics of melatonin may be different in young than in adult 

TS animals, affecting its final concentration in the brain and reducing its beneficial effects on 

neurogenesis and cognitive deficits. Future studies should explore the dose-range and 

pharmacokinetic profile to define the optimal concentration at which the neuroprotective actions of 

melatonin at pre- and post-natal stages in TS mice are most effective. 

The potential response of fetal brains to maternal melatonin signals have only been detected on 

the 17th or 18th day of gestation in rats [71], and changes in maternal melatonin could influence 

the expression of melatonin receptors in different brain areas of the offspring [72,73], thus 

compromising the response to the indoleamine in the first gestational days. Recently, Vilches et 

al. [74] demonstrated that the induction of chronodisruption in pregnant rats alters the 

transplacental melatonin signals responsible for the entrainment of daily rhythms of fetal 

developing tissues, including the hippocampus, and exerts negative effects on long-term 

cognitive functions in the offspring when assessed as adults. In our experiment, maternal 

exogenous melatonin administration during the gestational period could be in conflict with 

endogenous signals, thus inducing alterations in the development of plasticity of several brain 

areas modulated by maternal melatonin. Furthermore, oral melatonin administration to pregnant 

rats retards the secretion of postnatal testosterone and some neurotransmitters, such as 

substance P and neurokinin A, in various brain structures in the offspring [75]. Therefore, it is 
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possible that melatonin administered during the early life stages in TS animals exerts some of 

these adverse effects, preventing the pro-cognitive effects induced by this indoleamine in later 

life-stages.  

Although most studies have not found side effects after long-term treatment with melatonin in 

children [76-78] or after maternal or early post-natal life treatment in animals [79-81], some 

studies revealed negative effects of melatonin in developing organisms, such as reductions in 

litter size, pup growth and weight, increased mortality, and alterations in sexual maturation, 

fertility and levels of luteinizing hormone [50, 82-85].  

Other pharmacotherapies have been shown to be effective when administered pre-natally or 

during the early post-natal stages to TS mice. For example, the neuroprotective peptides, NAP 

and SAL, and fluoxetine and choline have been shown to improve cognitive dysfunction and 

prevent neurogenesis defects and hypocellularity [52, 86-88]. On the other hand, conflicting 

results have been found regarding the use of antioxidants at pre- and post-natal stages in TS 

mice. While the administration of SGS-111, a neural antioxidant similar to piracetam, from 

conception to adulthood did not improve memory and spatial learning in TS animals [28], early 

intervention with α-tocopherol ameliorated oxidative stress and induced cognitive improvements 

in this mouse model [63]. In children and teenagers with DS, early antioxidant intervention with 

antioxidants, such as vitamins E and C, attenuated systemic oxidative damage [55,89,90]. 

However, there is no clinical evidence regarding the benefits of antioxidant supplementation on 

cognitive function in children and young adults with DS [91-93].  

Conclusions 

In the present work, pre- and post-natal melatonin treatment partially regulated OS in the brains 

of young TS mice. However, this pattern of administration did not attenuate the reduced 

hippocampal cell proliferation and hypocellularity or the cognitive deficits of these animals. These 

results show the inability of melatonin to prevent the cognitive impairment of TS mice when it is 

administered at pre- and post-natal stages and suggest that to produce pro-cognitive effects in 

TS mice during the early stages of development, in addition to attenuating OS, therapies should 

be targeted toward the improvement of other altered processes, such as hippocampal 

neurogenesis and/or hypocellularity.  
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7. Figure legends 

Fig. 1 Latency (in seconds) to reach the platform during the 8 acquisition sessions (A) and during 

the 4 cued sessions (B) in the MWM after chronic administration of melatonin or vehicle during 

the pre- and post-natal period in TS and CO mice. Data are expressed as the means ± SEM. * 

p<0.05; ** p<0.01; *** p<0.001 TS vs. CO; ##: p<0.01 vehicle-treated vs. melatonin-treated mice. 

Bonferroni tests were performed after significant MANOVAs. 

Fig. 2 Means ± S.E.M. of the percentage of time spent freezing (A) and of the freezing latency (B, 

time spent from the start of the test until the first freezing episode) during the second (cued 

conditioning) and third (context conditioning) sessions in the CFC test for melatonin and vehicle 

treated-TS and CO mice. ** p<0.01; TS vs. CO. Bonferroni tests were performed after significant 

MANOVAs. 

Fig. 3. Fall latency (in seconds) on the rotarod test (A) at different constant speeds (5, 20 and 40 

r.p.m.) and during the acceleration cycle for CO and TS mice treated with either vehicle or 

melatonin. Data are expressed as the means ± SEM. 

Fig. 4. Spontaneous locomotor activity. Means ± SEM of the total home cage count activity 

performed over a 24-h period by CO and TS mice treated with vehicle or melatonin.  

Fig. 5. Number of crossings (A, horizontal activity) and rearings (B, vertical activity) performed by 

CO and TS mice treated with vehicle or melatonin during the pre- and post-natal periods in the 

open field test. Data shown are the means ± SEM. * p<0.05; ** p<0.01; *** p<0.001 TS vs. CO. 

Bonferroni tests were performed after significant MANOVAs. 

Fig. 6. Means ± SEM of the scores obtained for the CO and TS mice treated with vehicle or 

melatonin during the pre- and post-natal period in the plus maze test. (A) Number of arm entries, 

(B) the time spent in the open arms of the apparatus, (C) freezing behavior (in seconds) and (D) 

number of risk-associated behaviors (SAP: stretch attend posture; HD: head dipping). *p<0.05 TS 

vs. CO. Bonferroni tests were performed after significant MANOVAs. 

Fig. 7. (A) Representative images of DAPI (upper row), Ki67 (second row) and co-

immunostaining of Ki67 and DAPI (third row) in the DG of TS and CO mice treated with vehicle or 

melatonin during the pre- and post-natal periods. (B) Means ± S.E.M. of the density of Ki67+ cells 

in the SGZ and (C) of mature granule cells in the GCL of the vehicle- or melatonin- treated TS 
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and CO mice. *: p<0.05; **: p<0.01; ***: p<0.001 TS vs. CO. Bonferroni tests were performed 

after significant MANOVAs. 

Fig. 8. Means ± S.E.M. of the levels of PC (A) and TBARS (B) in the cortex and hippocampus of 

TS and CO mice treated with melatonin or vehicle. *p<0.05, TS vs. CO. Bonferroni tests were 

performed after significant MANOVAs.  

Fig. 9. Means ± S.E.M. of the activity levels of different antioxidant enzymes in the hippocampus 

and cortex of TS and CO mice treated with melatonin or vehicle. Superoxide dismutase (SOD, A), 

catalase (CAT, B), glutathione peroxidase (GPx, C), glutathione reductase (GR, D) and 

glutathione-S-transferase (GST). Mean ± SEM. *p<0.05; **p<0.01; ***p<0.001 TS vs. CO; #: 

p<0.05 vehicle-treated vs. melatonin-treated mice. Bonferroni tests were performed after 

significant MANOVAs. 
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 Table 1: Plasma melatonin concentration in TS and CO pups treated with either melatonin or 

vehicle. Data are expressed as the means ± S.E.M. ##p<0.01; ###p<0.001 vehicle-treated vs. 

melatonin-treated mice. Bonferroni tests were performed after significant MANOVAs. 

 

 TREATMENT STATISTICS 

VEHICLE MELATONIN MANOVA F(1,21) 

Plasma 

melatonin 

CO TS CO TS Genotype Treatment Genotype 

x 

treatment 

pg/ml (light) Under kit 

detection 

range 

(<12 

pg/ml) 

Under kit 

detection 

range 

(<12 

pg/ml) 

87.69 ± 

16.12 

105.04 ± 

16.68 

- 48.26, 

p<0.001 

1.38, 

p=0.25 

pg/ml (dark) 26.82 ± 

8.10  

31.83 ± 

9.19 

130.96## 

± 26.70 

143.47### 

± 12.87 

0.31, 

p=0.58 

47.51, 

p<0.001 

0.05, 

p=0.81 
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Table 2. Sensorimotor tests. Scores are presented as the means ± SEM obtained from TS and 

CO mice after vehicle or melatonin treatment during pre- and post-natal periods. 

TREATMENT STATISTICS 

VEHICLE MELATONIN MANOVA F(1,49) 

  

CO 

 

TS 

 

CO 

 

TS 

Genotype Treatment Genotype 

x 

treatment 

Vision 2.42 ± 

0.17 

2.50 ± 

0.19 

2.50 ± 

0.20 

2.27 ± 

0.19 

F=0.163 

p=0.68 

F=0.16, 

p=0.68 

F=0.59, 

p=0.44 

Auditory startle 1.28 ± 

0.16 

1.08 ± 

0.08 

1.07 ± 

0.07 

1.36 ± 

0.20 

F=0.10, 

p=0.74 

F=0.05, 

p=0.81 

F=3.22, 

p=0.07 

Vibrissa placing reflex 0.00 ± 

0.00 

0.00 

±0.00 

0.07 ± 

0.07 

0.00 ± 

0.00 

F=0.81, 

p=0.37 

F=0,81, 

p=0.37 

F=0.81, 

p=0.37 

Righting reflex 3.00 ± 

0.00 

3.00 ± 

0.00 

3.00 ± 

0.00 

3.00 ± 

0.00 

   

Grip strength 3.00 ± 

0.14 

2.75 ± 

0.13 

3.00 ± 

0.10 

3.00 ± 

0.19 

F=0.75, 

p=0.38 

F=0.75, 

p=0.38 

F=0,75, 

p=0.38 

 

Equilibrium 

Wooden 

rod 

2.07 ± 

0.16 

2.16 ± 

0.16 

2.57 ± 

0.25 

2.09 ± 

0.09 

F=1.05 

p=0.31 

F=1.27, 

p=0.26 

F=2.34, 

p=0.13 

Aluminum 

rod 

1.14 ± 

0.49 

0.50 ± 

0.23 

1.64 ± 

0.58 

0.90 ± 

0.54 

F=1,91, 

p=0.17 

F=0.83, 

p=0.36 

F=0.08, 

p=0.92 

Latency to fall wooden 

rod 

19.60± 

0.39 

20.00± 

0.00 

20.00± 

0.00 

20.00  

± 0.00 

F=0.81, 

p=0.37 

F=0.81, 

p=0.37 

F=0.81, 

p=0.37 

Latency to fall aluminum 

rod 

7.42 ± 

1.77 

6.58 ± 

1.69 

11.39 ± 

1.86 

8.04 

±2.21 

F=1.22, 

p=0.27 

F=2.04, 

p=0.15 

F=0.43, 

p=0.51 

Prehensile reflex 2.28 ± 

0.28 

2.50 ± 

0.23 

2.85 ± 

0.09 

2,36 ± 

0.27 

F=0.36, 

p=0.55 

F=0,87, 

p=0.35 

F=2.31, 

p=0.13 

Traction capacity 2.92 ± 

0.70 

2.50 ± 

0.66 

1.21 ± 

0.45 

2.451 

± 0.74 

F=0.39 

p=0.53 

F=1.84, 

p=0.18 

F=1.65, 

p=0.20 

Latency to fall coat 

hanger 

42.28 ± 

6.81 

43.75 ± 

6.2 

37.14 ± 

5.96 

37.18 

± 7.51 

F=0.01, 

p=0.91 

F=0.77, 

p=0.38 

F=0.01, 

p=0.91 

Nº crossings coat 

hanger 

4.28 ± 

0.89 

3.83 ± 

0.57 

4.50 ± 

1.03 

3.45 ± 

0.81 

F=0.73, 

p=0.39 

 

F=0.009, 

p=0.92 

F=0.11, 

p=0.73 

Latency of arrival coat 

hanger 

35,71 ± 

5.46 

32.41 ± 

6.05 

30.85 ± 

5.79 

40.90 

± 6.09 

F=0.33, 

p=0.56 

F=0.096, 

p=0.75 

F=1.29, 

p=0.26 
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Table 3. Mean scores ± SEM of melatonin- and vehicle-treated TS and CO mice during the pre- 

and post-natal periods in the hole board test. #: p<0.05 vehicle-treated vs. melatonin-treated 

mice. Bonferroni tests were performed after significant MANOVAs. 

  

 TREATMENT  STATISTICS 

Vehicle Melatonin MANOVA F(1,49) 

TS CO TS CO Genotype Treatment Genotype 
x 
treatment 

 
Distance 

5.88 ± 
0.57 

7.46 ± 
0.92 

8.16 ± 
1.02 

8.36 ± 
1.20 

F=0.64, 
p=0.42 

F=2.85, 
p=0.09 

F=0.36, 
p=0.54 

 
Rearings 

8.00 ± 
2.54 

9.85 ± 
2.15 

11.5 ± 
2.84 

14.71 ± 
2.91 

F=0.91, 
p=0.34 

F=2.47, 
p=0.12 

F=0.06, 
p=0.79 

 
Number of explorations 

29.25 ± 
3.77 

20.14 ± 
1.80 

18.40#  ± 
3.09 

15.21 ± 
1.48 

F=5.76, 
p≤0.05 

F=9.49, 
p≤0.01 

F=1.33, 
p=0.25 

 
Time exploring holes 

32.43 ± 
6.36 

33.21 ± 
5.70 

14.40 ± 
3.09 

24.05 ± 
4.35 

F=0.98, 
p=0.32 

F=6.69, 
p≤0.01 

F=0.71, 
p=0.40 

 
ABA index 

7.08 ± 
0.94 

5.42 ± 
0.64 

3.90# ± 
0.83 

3.28 ± 
0.64 

F=2.18, 
p=0.14 

F=12.04, 
p≤0.001 

F=0.46, 
p=0.50 

 
ABA/number of explorations 

0.26 ± 
0.02 

0.28 ± 
0.03 

0.19 ± 
0.02 

0.21 ± 
0.04 

F=0.33, 
p=0.56 

F=3.54, 
p=0.06 

F=0.01, 
p=0.89 
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Table 4. F values of MANOVA (genotype x treatment) of each variable tested in the open field 

and plus maze tests.  

 MANOVA F(1,49) 

 Genotype Treatment Genotype x treatment 

Open field    
Distance center F= 5.54; p≤ 0.05 F= 0.004; p=0.95 F= 0.038; p= 0.84 
Distance periphery F=17.29; p≤0.001 F=0.016; p=0.90 F=0.023; p=0.88 
Total distance F=13.71; p≤0.001 F= 0.012; p=0.91 F=0.001; p=0.97 
Rearings  F= 1.55; p=0.21 F= 1.51; p= 0.22 F= 1.88; p=0.17 
Plus maze    
Number of entries    
Open F = 0.00; p= 0.99 F= 2.72; p= 0.10 F= 0.26; p= 0.99 
Closed F= 2.75; p= 0.10 F= 0.00; p= 0.12 F= 0.002; p= 0.96 
Total entries F= 1.06; p= 0.30 F= 1.85; p= 0.18 F= 0.15; p= 0.69 
Time open arms  F= 1.99; p= 0.16 F= 0.004; p= 0.95 F= 0.096; p= 0.75 
Freezing time F= 1.81; p= 0.18 F= 0.79; p= 0.37 F= 0.22; p= 0.63 
HD + SAP F= 0.07; p= 0,79 F= 0.06; p= 0,93 F= 0.41; p= 0.52 
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Table 5. F values of MANOVA (genotype x treatment) for oxidative stress markers and 

antioxidant enzymatic activities in the cortex and hippocampus of the four groups of animals.  

 

 MANOVA F(1,21) 

 CORTEX HIPPOCAMPUS 

 Genotype Treatment Genotype x 

Treatment 

Genotype Treatment Genotype x 

Treatment 

PC level F=1.74, 
p=0.20 

F=0.00, 
p=0.98 

F=4.72, 
p≤0.05 

F=1.41, 
p=0.24 

F=0.42, 
p=0.52 

F=0.38, 
p=0.54 

TBARS level F=0.13, 

p=0.71 

F=0.001, 

p=0.97 

F=0.18, 

p=0.67 

F=6.12, 

p≤0.05 

F=2.93, 

p=0.10 

F=1.43, 

p=0.24 

SOD activity F=6.79, 
p≤0.05 

F=6.33, 
p≤0.05 

F=3.60, 
p=0.99 

F=23.26, 
p≤0.001 

F=2.14, 
p=0.16 

F=0.04, 
p=0.82 

CAT activity F=0.77, 

p=0.39 

F=6.98, 

p≤0.05 

F=0.00, 

p=0.67 

F=12.16, 

p≤0.01 

F=1.64, 

p=0.21 

F=4.66, 

p≤0.05 

GPx activity F=0.56, 

p=0.46 

F=0.23, 

p=0.63 

F=0.04, 

p=0.82 

F=0.84, 

p=0.37 

F=0.52, 

p=0.47 

F=0.33, 

p=0.56 

GR activity F=0.11, 
p=0.74 

F=0.20, 

p=0.65 

F=3.04, 
p=0.09 

F=6.76, 

p≤0.05 

F=0.81, 

p=0.37 

F=0.07, 

p=0.79 

GST activity F=0.008, 
p=0.93 

F=1.79, 

p=0.19 

F=0.27, 
p=0.61 

F=1.17, 

p=0.29 

F=0.12, 

p=0.72 

F=1.72, 

p=0.20 

 

 

 

 


