6,129 research outputs found

    Optimal cloning of coherent states by linear optics

    Get PDF
    We describe an optical scheme for optimal Gaussian n to m cloning of coherent states. The scheme, which generalizes a recently demonstrated scheme for 1 to 2 cloning, involves only linear optical components and homodyne detection.Comment: 5 pages, 4 figures, presented at the 13th Central European Workshop on Quantum Optics, May 23-27 2006, Vienna, Austria (Proceedings will be published in "Acta Physica Hungarica"); reference added, Eq. (8) correcte

    Observing the very low-surface brightness dwarfs in a deep field in the VIRGO cluster: constraints on Dark Matter scenarios

    Get PDF
    We report the discovery of 11 very faint (r< 23), low surface brightness ({\mu}_r< 27 mag/arcsec^2) dwarf galaxies in one deep field in the Virgo cluster, obtained by the prime focus cameras (LBC) at the Large Binocular Telescope (LBT). These extend our previous sample to reach a total number of 27 galaxies in a field of just of 0.17 deg^2 located at a median distance of 390 kpc from the cluster center. Their association with the Virgo cluster is supported by their separate position in the central surface brightness - total magnitude plane with respect to the background galaxies of similar total magnitude. For a significant fraction (26\%) of the sample the association to the cluster is confirmed by spectroscopic follow-up. We show that the mere abundance of satellite galaxies corresponding to our observed number in the target field provides extremely tight constraints on Dark Matter models with suppressed power spectrum compared to the Cold Dark Matter case, independently of the galaxy luminosity distribution. In particular, requiring the observed number of satellite galaxies not to exceed the predicted abundance of Dark Matter sub-halos yields a limit m_X >3 keV at 1-{\sigma} and m_X > 2.3 keV at 2-{\sigma} confidence level for the mass of thermal Warm Dark Matter particles. Such a limit is competitive with other limits set by the abundance of ultra-faint satellite galaxies in the Milky Way, is completely independent of baryon physics involved in galaxy formation, and has the potentiality for appreciable improvements with next observations. We extend our analysis to Dark Matter models based on sterile neutrinos, showing that our observations set tight constraints on the combination of sterile neutrino mass m_{\nu} and mixing parameter sin^2(2{\theta}). We discuss the robustness of our results with respect to systematics.Comment: Accepted for publication in Astronomy & Astrophysic

    Programmable purification of type-I polarization-entanglement

    Get PDF
    We suggest and demonstrate a scheme to compensate spatial and spectral decoherence effects in the generation of polarization entangled states by type-I parametric downconversion. In our device a programmable spatial light modulator imposes a polarization dependent phase-shift on different spatial sections of the overall downconversion output and this effect is exploited to realize an effective purification technique for polarization entanglement.Comment: published versio

    Superspace formulation of general massive gauge theories and geometric interpretation of mass-dependent BRST symmetries

    Get PDF
    A superspace formulation is proposed for the osp(1,2)-covariant Lagrangian quantization of general massive gauge theories. The superalgebra os0(1,2) is considered as subalgebra of sl(1,2); the latter may be considered as the algebra of generators of the conformal group in a superspace with two anticommuting coordinates. The mass-dependent (anti)BRST symmetries of proper solutions of the quantum master equations in the osp(1,2)-covariant formalism are realized in that superspace as invariance under translations combined with mass-dependent special conformal transformations. The Sp(2) symmetry - in particular the ghost number conservation - and the "new ghost number" conservation are realized as invariance under symplectic rotations and dilatations, respectively. The transformations of the gauge fields - and of the full set of necessarily required (anti)ghost and auxiliary fields - under the superalgebra sl(1,2) are determined both for irreducible and first-stage reducible theories with closed gauge algebra.Comment: 35 pages, AMSTEX, precision of reference

    The detection of ultra-faint low surface brightness dwarf galaxies in the Virgo Cluster: a Probe of Dark Matter and Baryonic Physics

    Get PDF
    We have discovered 11 ultra-faint (r22.1r\lesssim 22.1) low surface brightness (LSB, central surface brightness 23μr2623\lesssim \mu_r\lesssim 26) dwarf galaxy candidates in one deep Virgo field of just 576576 arcmin2^2 obtained by the Large Binocular Camera (LBC) at the Large Binocular Telescope (LBT). Their association with the Virgo cluster is supported by their distinct position in the central surface brightness - total magnitude plane with respect to the background galaxies of similar total magnitude. They have typical absolute magnitudes and scale sizes, if at the distance of Virgo, in the range 13Mr9-13\lesssim M_r\lesssim -9 and 250rs850250\lesssim r_s\lesssim 850 pc, respectively. Their colors are consistent with a gradually declining star formation history with a specific star formation rate of the order of 101110^{-11} yr1^{-1}, i.e. 10 times lower than that of main sequence star forming galaxies. They are older than the cluster formation age and appear regular in morphology. They represent the faintest extremes of the population of low luminosity LSB dwarfs that has been recently detected in wider surveys of the Virgo cluster. Thanks to the depth of our observations we are able to extend the Virgo luminosity function down to Mr9.3M_r\sim -9.3 (corresponding to total masses M107M\sim 10^7 M_{\odot}), finding an average faint-end slope α1.4\alpha\simeq -1.4. This relatively steep slope puts interesting constraints on the nature of the Dark Matter and in particular on warm Dark Matter (WDM) often invoked to solve the overprediction of the dwarf number density by the standard CDM scenario. We derive a lower limit on the WDM particle mass >1.5>1.5 keV.Comment: accepted for publication in ApJ, 13 pages, 6 figure

    Unsupervised classification and areal measurement of land and water coastal features on the Texas coast

    Get PDF
    Multispectral scanner (MSS) digital data from ERTS-1 was used to delineate coastal land, vegetative, and water features in two portions of the Texas Coastal Zone. Data (Scene ID's 1037-16244 and 1037-16251) acquired on August 29, 1972, were analyzed on NASA Johnson Space Center systems through the use of two clustering algorithms. Seventeen to 30 spectrally homogeneous classes were so defined. Many classes were identified as being pure features such as water masses, salt marsh, beaches, pine, hardwoods, and exposed soil or construction materials. Most classes were identified to be mixtures of the pure class types. Using an objective technique for measuring the percentage of wetland along salt marsh boundaries, an analysis was made of the accuracy of areal measurement of salt marshes. Accuracies ranged from 89 to 99 percent. Aircraft photography was used as the basis for determining the true areal size of salt marshes in the study sites

    Toward a unified description of hadro- and photoproduction amplitudes

    Full text link
    The near-term objectives of the research program at the Data Analysis Center are established within the context of the existing partial wave analyses available through the online suite of analysis and database codes accessible through SAID, the Scattering Analysis Interactive Database. This presentation reviews the efforts to determine a model independent method to obtain sets of partial wave amplitudes for strong and electromagnetic reactions, the interpretation of the amplitudes in terms of the excited states of the nucleon, the role of new precision unpolarized and polarized data, and new developments aimed at determining the photoproduction mulitpoles in a unitary, coupled-channel approach. The Chew-Mandelstam technique is discussed and applied to the problem of the S-wave pion- and eta-photoproduction amplitudes. The resulting eta production amplitudes exhibit the expected resonant behavior near the eta production threshold. Application of this method to a unified description of the hadro- and photoproduction amplitudes is discussed.Comment: 4 pages, 1 figure, invited talk for the 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2010), Williamsburg, Virginia, 31 May - 4 Jun 201

    Effect of Sigma-beam Asymmetry Data on Fits to Single Pion Photoproduction off Neutron

    Full text link
    We investigate the influence of new GRAAL Sigma-beam asymmetry measurements on the neutron in multipole fits to the single-pion photoproduction database. Results are compared to those found with the addition of a double-polarization quantity associated with the sum rule.Comment: 4 pages, 4 figures, 1 table; v2/v3: minor corrections; Presented at the 8th Workshop on the Physics of Excited Nucleons (NSTAR2011), Newport News, USA, May 201

    Versatile Cold Atom Source for Multi-Species Experiments

    Get PDF
    We present a dual-species oven and Zeeman slower setup capable of producing slow, high-flux atomic beams for loading magneto-optical traps. Our compact and versatile system is based on electronic switching between different magnetic field profiles and is applicable to a wide range of multi-species experiments. We give details of the vacuum setup, coils and simple electronic circuitry. In addition, we demonstrate the performance of our system by optimized, sequential loading of magneto-optical traps of lithium-6 and cesium-133.Comment: 7 pages, 10 figure

    High efficiency tomographic reconstruction of quantum states by quantum nondemolition measurements

    Full text link
    We propose a high efficiency tomographic scheme to reconstruct an unknown quantum state of the qubits by using a series of quantum nondemolition (QND) measurements. The proposed QND measurements of the qubits are implemented by probing the the stationary transmissions of the dispersively-coupled resonator. It is shown that only one kind of QND measurements is sufficient to determine all the diagonal elements of the density matrix of the detected quantum state. The remaining non-diagonal elements of the density matrix can be determined by other spectral measurements by beforehand transferring them to the diagonal locations using a series of unitary operations. Compared with the pervious tomographic reconstructions based on the usual destructively projective (DP) measurements (wherein one kind of such measurements could only determine one diagonal element of the density matrix), the present approach exhibits significantly high efficiency for N-qubit (N > 1). Specifically, our generic proposal is demonstrated by the experimental circuit-quantumelectrodynamics (circuit-QED) systems with a few Josephson charge qubits.Comment: 9pages,4figure
    corecore