577 research outputs found

    The Spatial Context of “Winning” in MPA Network Design: Location Matters

    Get PDF
    (First paragraph) Chollett et al. (2017) make the case that a local network of marine protected areas (MPAs) enhances fisheries for Caribbean spiny lobster (Panulirus argus) off the coast of Honduras. However, their simulation focused on one ecoregion where self-recruitment is predicted to be among the highest in the Caribbean (Cowen, Paris, & Srinivasan, 2006). The shallow banks and scattered cays of the Honduran-Nicaraguan Rise, separating the Cayman and Colombian basins, create an obstacle to the powerful southern Caribbean jet (Richardson, 2005), fostering an ideal location for topographically steered eddies and larval retention. Local management,whether based on traditional techniques or MPAs, is indeed likely to be successful in sustaining the lobster population in that region. But the authors go too far in promoting local management based on a best-case scenario where the population is largely self recruiting, and they downplay the need for international cooperation in managing one of the most economically important species in the Caribbean (Kough, Paris, & Butler IV, 2013)

    Larval Connectivity and the International Management of Fisheries

    Get PDF
    Predicting the oceanic dispersal of planktonic larvae that connect scattered marine animal populations is difficult, yet crucial for management of species whose movements transcend international boundaries. Using multi-scale biophysical modeling techniques coupled with empirical estimates of larval behavior and gamete production, we predict and empirically verify spatio-temporal patterns of larval supply and describe the Caribbean-wide pattern of larval connectivity for the Caribbean spiny lobster (Panulirus argus), an iconic coral reef species whose commercial value approaches $1 billion USD annually. Our results provide long sought information needed for international cooperation in the management of marine resources by identifying lobster larval connectivity and dispersal pathways throughout the Caribbean. Moreover, we outline how large-scale fishery management could explicitly recognize metapopulation structure by considering larval transport dynamics and pelagic larval sanctuaries

    Description of surface transport in the region of the Belizean Barrier Reef based on observations and alternative high-resolution models

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Ocean Modelling 106 (2016): 74–89, doi:10.1016/j.ocemod.2016.09.010.The gains from implementing high-resolution versus less costly low-resolution models to describe coastal circulation are not always clear, often lacking statistical evaluation. Here we construct a hierarchy of ocean-atmosphere models operating at multiple scales within a 1×1° domain of the Belizean Barrier Reef (BBR). The various components of the atmosphere-ocean models are evaluated with in situ observations of surface drifters, wind and sea surface temperature. First, we compare the dispersion and velocity of 55 surface drifters released in the field in summer 2013 to the dispersion and velocity of simulated drifters under alternative model configurations. Increasing the resolution of the ocean model (from 1/12° to 1/100°, from 1 day to 1 h) and atmosphere model forcing (from 1/2° to 1/100°, from 6 h to 1 h), and incorporating tidal forcing incrementally reduces discrepancy between simulated and observed velocities and dispersion. Next, in trying to understand why the high-resolution models improve prediction, we find that resolving both the diurnal sea-breeze and semi-diurnal tides is key to improving the Lagrangian statistics and transport predictions along the BBR. Notably, the model with the highest ocean-atmosphere resolution and with tidal forcing generates a higher number of looping trajectories and sub-mesoscale coherent structures that are otherwise unresolved. Finally, simulations conducted with this model from June to August of 2013 show an intensification of the velocity fields throughout the summer and reveal a mesoscale anticyclonic circulation around Glovers Reef, and sub-mesoscale cyclonic eddies formed in the vicinity of Columbus Island. This study provides a general framework to assess the best surface transport prediction from alternative ocean-atmosphere models using metrics derived from high frequency drifters’ data and meteorological stations.This research is supported by the National Science Foundation award NSF-OCE 1260424

    Uniting paradigms of connectivity in marine ecology

    Get PDF
    The connectivity of marine organisms among habitat patches has been dominated by two independent paradigms with distinct conservation strategies. One paradigm is the dispersal of larvae on ocean currents, which suggests networks of marine reserves. The other is the demersal migration of animals from nursery to adult habitats, requiring the conservation of connected ecosystem corridors. Here, we suggest that a common driver, wave exposure, links larval and demersal connectivity across the seascape. To study the effect of linked connectivities on fish abundance at reefs, we parameterize a demographic model for The Bahamas seascape using maps of habitats, empirically forced models of wave exposure and spatially realistic three-dimensional hydrological models of larval dispersal. The integrated empirical-modeling approach enabled us to study linked connectivity on a scale not currently possible by purely empirical studies. We find sheltered environments not only provide greater nursery habitat for juvenile fish but larvae spawned on adjacent reefs have higher retention, thereby creating a synergistic increase in fish abundance. Uniting connectivity paradigms to consider all life stages simultaneously can help explain the evolution of nursery habitat use and simplifies conservation advice: Reserves in sheltered environments have desirable characteristics for biodiversity conservation and can support local fisheries through adult spillover

    The Role of Long Distance Dispersal Versus Local Retention in Replenishing Marine Populations

    Get PDF
    Early models and evidence from genetics suggested that long distance dispersal of larvae is likely a common event leading to considerable population connectivity among distant populations. However, recent evidence strongly suggests that local retention is more the rule, and that long distance transport is likely insufficient to sustain marine populations over demographic timescales. We build on earlier model results to examine the probability of larval dispersal to downstream islands within different regions of the Caribbean at varying distances from source populations. Through repeated runs of an ocean circulation model (MICOM), coupled with a random flight model estimating larval sub-grid turbulent motion, we estimate the likelihood of particular circulation events transporting large numbers of larvae to within 9km radii of downstream populations, as well as account for total accumulations of larvae over each year. Further, we incorporate realistic larval behavior and mortality estimates and production variability into our models. Our results are consistent with the hypothesis that marine populations must rely on mechanisms enhancing self-recruitment rather than depend on distant ‘source’ populations

    The derived category of surface algebras: the case of the torus with one boundary component

    Full text link
    In this paper we refine the main result of a previous paper of the author with Grimeland on derived invariants of surface algebras. We restrict to the case where the surface is a torus with one boundary component and give an easily computable derived invariant for such surface algebras. This result permits to give answers to open questions on gentle algebras: it provides examples of gentle algebras with the same AG-invariant (in the sense of Avella-Alaminos and Geiss) that are not derived equivalent and gives a partial positive answer to a conjecture due to Bobi\'nski and Malicki on gentle 22-cycles algebras.Comment: 22 pages, a mistake concerning the computation of the mapping class group has been fixed, version 3: 25 pages, to appear in Algebras and Representation Theor

    El Niño, surface circulation and coral larval dispersal across the world's greatest marine barrier

    Get PDF
    More than 5,000 km separates the frequently disturbed coral reefs of the Eastern Tropical Pacific (ETP) from western sources of population replenishment. It has been hypothesized that El Niño events facilitate eastward dispersal across this East Pacific Barrier (EPB). Here we present a biophysical coral larval dispersal model driven by 14.5 years of high-resolution surface ocean current data including the extreme 1997–1998 El Niño. We find no eastward cross-EPB connections over this period, which implies that ETP coral populations decimated by the 1998 bleaching event can only have recovered from eastern Pacific sources, in congruence with genetic data. Instead, rare connections between eastern and central Pacific reefs are simulated in a westward direction. Significant complexity and variability in the surface flows transporting larvae mean that generalized upper-ocean circulation patterns are poor descriptors of inter-regional connectivity, complicating the assessment of how climate change will impact coral gene flow Pacific wide

    Glioblastoma Stem-Like Cells, Metabolic Strategy to Kill a Challenging Target

    Get PDF
    Over the years, substantial evidence has definitively confirmed the existence of cancer stem-like cells within tumors such as Glioblastoma (GBM). The importance of Glioblastoma stem-like cells (GSCs) in tumor progression and relapse clearly highlights that cancer eradication requires killing of GSCs that are intrinsically resistant to conventional therapies as well as eradication of the non-GSCs cells since GSCs emergence relies on a dynamic process. The past decade of research highlights that metabolism is a significant player in tumor progression and actually might orchestrate it. The growing interest in cancer metabolism reprogrammation can lead to innovative approaches exploiting metabolic vulnerabilities of cancer cells. These approaches are challenging since they require overcoming the compensatory and adaptive responses of GSCs. In this review, we will summarize the current knowledge on GSCs with a particular focus on their metabolic complexity. We will also discuss potential approaches targeting GSCs metabolism to potentially improve clinical care

    Glass eels (Anguilla anguilla) imprint the magnetic direction of tidal currents from their juvenile estuaries

    Get PDF
    The European eel (Anguilla anguilla) hatches in the Sargasso Sea and migrates to European and North African freshwater. As glass eels, they reach estuaries where they become pigmented. Glass eels use a tidal phase-dependent magnetic compass for orientation, but whether their magnetic direction is innate or imprinted during migration is unknown. We tested the hypothesis that glass eels imprint their tidal-dependent magnetic compass direction at the estuaries where they recruit. We collected 222 glass eels from estuaries flowing in different cardinal directions in Austevoll, Norway. We observed the orientation of the glass eels in a magnetic laboratory where the magnetic North was rotated. Glass eels oriented towards the magnetic direction of the prevailing tidal current occurring at their recruitment estuary. Glass eels use their magnetic compass to memorize the magnetic direction of tidal flows. This mechanism could help them to maintain their position in an estuary and to migrate upstream.publishedVersio
    • 

    corecore