144 research outputs found

    Functions of S-nitrosylation in plant hormone networks

    Get PDF
    In plants, a wide frame of physiological processes are regulated in liaison by both, nitric oxide (NO) and hormones. Such overlapping roles raise the question of how the cross-talk between NO and hormones trigger common physiological responses. In general, NO has been largely accepted as a signaling molecule that works in different processes. Among the most relevant ways NO and the NO-derived reactive species can accomplish their biological functions it is worthy to mention post-translational protein modifications. In the last years, S-nitrosylation has been the most studied NO-dependent regulatory mechanism. Briefly, S-nitrosylation is a redox-based mechanism for cysteine residue modification and is being recognized as a ubiquitous regulatory reaction comparable to phosphorylation. Therefore, it is emerging as a crucial mechanism for the transduction of NO bioactivity in plants and animals. In this mini-review, we provide an overview on S-nitrosylation of target proteins related to hormone networks in plants.Fil: Paris, Ramiro. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Biológicas; ArgentinaFil: Iglesias, María José. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Biológicas; ArgentinaFil: Terrile, Maria Cecilia. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Biológicas; ArgentinaFil: Casalongue, Claudia. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Biológicas; Argentin

    Photochemical reactions of halogenated aromatic 1,3-diketones in solution studied by steady state, one- and two-color laser flash photolyses

    Full text link
    Photochemical processes of 4-tert-butyl-4'-methoxydibenzoylmethane (Avobenzone, AB), 4-phenylbenzoylbenzoyl-, 4-phenylbenzoyl-2'-furanyl- and 4-phenylbenzoyl-2'-thenoylmethanes (PB@Ph, PB@F and PB@T, respectively) substituted with Br and Cl at the C2 position were studied by stationary and laser flash photolyses in solution. The absorption spectral features showed that the molecular structures of the halogenated diketones are in the keto forms while those of halogen-free diketones are in the enol forms. The excited singlet and triplet state energies were determined from the absorption and emission spectra. From the absorption spectral changes upon steady state photolysis of brominated diketones in ethanol, the corresponding halogen-free diketones were formed due to Br elimination being the major photochemical process. The determined quantum yields for the formation of the halogen-free diketones were independent of the amount of dissolved oxygen, indicating that the elimination process is an event in the excited singlet (S-1) states. In contrast, from the observed absorption spectra obtained upon photolysis of chlorinated AB and PB@Ph, it was inferred that Norrish type I is the major photochemical reaction in the S-1 states in acetonitrile. Chlorinated PB@F and PB@T were found to undergo Cl elimination in the S-1 states in cyclohexane to form the corresponding halogen-free diketones. Laser photolysis studies of brominated AB in acetonitrile and ethanol provided a transient absorption spectrum ascribable to the Avobenzone radical (ABR) produced by debromination as the initial intermediate, followed by the AB formation in ethanol. The quenching rate constant of ABR by ethanol and the quantum yield of the AB formation via ABR were determined. These observations provided evidence that H-atom abstraction of ABR from ethanol is responsible for the AB formation. Conversely, laser flash photolysis of brominated and chlorinated PB@Ph, PB@F and PB@T demonstrated the formation of the triplet-triplet absorption spectra. No chemical reactions were found to occur in the triplet (T-1) states. Two-color two-laser photolysis studies were carried out on the T-1 state of chlorinated PB@Ph, PB@F and PB@T, resulting in the formation of the corresponding halogen-free diketones. These observations confirmed the occurrence of Cl elimination in the highly excited triplet (T-n, n >= 2) states. Based on the computed bond dissociation energies for the C-halogen and C-C bonds, switching mechanisms of dehalogenation and alpha-cleavage were discussed.This work has been supported by a Grant-in-Aid for Scientific Research (26288032) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japanese Government. MY thanks Cosmetrogy Foundation for the financial support. Prof. Teruo Shinmyozu and Dr Kenta Goto at Kyusyu University are acknowledged for performing the mass spectroscopy of PP253 and PP283.Yamaji, M.; Suwa, Y.; Shimokawa, R.; Paris, C.; Miranda Alonso, MÁ. (2015). Photochemical reactions of halogenated aromatic 1,3-diketones in solution studied by steady state, one- and two-color laser flash photolyses. Photochemical & Photobiological Sciences. 14(9):1673-1684. https://doi.org/10.1039/c5pp00211g16731684149Gacoin, P. (1972). Studies of the Triplet State of Carbonyl Compounds. I. Phosphorescence of β‐Diketones. The Journal of Chemical Physics, 57(4), 1418-1425. doi:10.1063/1.1678420Vila, A. J., Lagier, C. M., & Olivieri, A. C. (1991). Proton transfer in solid 1-phenylbutane-1,3-dione and related 1,3-diones as studied by carbon-13 CPMAS NMR spectroscopy and AM1 calculations. The Journal of Physical Chemistry, 95(13), 5069-5073. doi:10.1021/j100166a031Gonzenbach, H., Hill, T. J., & Truscott, T. G. (1992). The triplet energy levels of UVA and UVB sunscreens. Journal of Photochemistry and Photobiology B: Biology, 16(3-4), 377-379. doi:10.1016/1011-1344(92)80025-qRoscher, N. M., Lindemann, M. K. O., Bin Kong, S., Cho, C. G., & Jiang, P. (1994). Photodecomposition of several compounds commonly used as sunscreen agents. Journal of Photochemistry and Photobiology A: Chemistry, 80(1-3), 417-421. doi:10.1016/1010-6030(94)01043-9Schwack, W., & Rudolph, T. (1995). Photochemistry of dibenzoyl methane UVA filters Part 1. Journal of Photochemistry and Photobiology B: Biology, 28(3), 229-234. doi:10.1016/1011-1344(95)07118-lAndrae, I., Bringhen, A., Böhm, F., Gonzenbach, H., Hill, T., Mulroy, L., & Truscott, T. . (1997). A UVA filter (4-tert-butyl-4′-methoxydibenzoylmethane): photoprotection reflects photophysical properties. Journal of Photochemistry and Photobiology B: Biology, 37(1-2), 147-150. doi:10.1016/s1011-1344(96)07330-7Dubois, M., Gilard, P., Tiercet, P., Deflandre, A., & Lefebvre, M. A. (1998). Photoisomerisation of the sunscreen filter PARSOL © 1789. Journal de Chimie Physique et de Physico-Chimie Biologique, 95(2), 388-394. doi:10.1051/jcp:1998149Gasparro, F. P., Mitchnick, M., & Nash, J. F. (1998). A Review of Sunscreen Safety and Efficacy. Photochemistry and Photobiology, 68(3), 243-256. doi:10.1111/j.1751-1097.1998.tb09677.xCantrell, A., & McGarvey, D. J. (2001). Photochemical studies of 4-tert-butyl-4′-methoxydibenzoylmethane (BM-DBM). Journal of Photochemistry and Photobiology B: Biology, 64(2-3), 117-122. doi:10.1016/s1011-1344(01)00226-3Chatelain, E., & Gabard, B. (2001). Photostabilization of Butyl methoxydibenzoylmethane (Avobenzone) and Ethylhexyl methoxycinnamate by Bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), a New UV Broadband Filter¶. Photochemistry and Photobiology, 74(3), 401. doi:10.1562/0031-8655(2001)0742.0.co;2Wetz, F., Routaboul, C., Lavabre, D., Garrigues, J.-C., Rico-Lattes, I., Pernet, I., & Denis, A. (2004). Photochemical Behavior of a New Long-chain UV Absorber† Derived from 4-tert-Butyl-4′-Methoxydibenzoylmethane¶. Photochemistry and Photobiology, 80(2), 316. doi:10.1562/2004-03-09-ra-106.1Damiani, E., Rosati, L., Castagna, R., Carloni, P., & Greci, L. (2006). Changes in ultraviolet absorbance and hence in protective efficacy against lipid peroxidation of organic sunscreens after UVA irradiation. Journal of Photochemistry and Photobiology B: Biology, 82(3), 204-213. doi:10.1016/j.jphotobiol.2005.03.011Dondi, D., Albini, A., & Serpone, N. (2006). Interactions between different solar UVB/UVA filters contained in commercial suncreams and consequent loss of UV protection. Photochemical & Photobiological Sciences, 5(9), 835. doi:10.1039/b606768aAspée, A., Aliaga, C., & Scaiano, J. C. (2007). Transient Enol Isomers of Dibenzoylmethane and Avobenzone as Efficient Hydrogen Donors toward a Nitroxide Pre-fluorescent Probe†. Photochemistry and Photobiology, 83(3), 481-485. doi:10.1562/2006-08-01-ra-992Damiani, E., Baschong, W., & Greci, L. (2007). UV-Filter combinations under UV-A exposure: Concomitant quantification of over-all spectral stability and molecular integrity. Journal of Photochemistry and Photobiology B: Biology, 87(2), 95-104. doi:10.1016/j.jphotobiol.2007.03.003Huong, S. P., Rocher, E., Fourneron, J.-D., Charles, L., Monnier, V., Bun, H., & Andrieu, V. (2008). Photoreactivity of the sunscreen butylmethoxydibenzoylmethane (DBM) under various experimental conditions. Journal of Photochemistry and Photobiology A: Chemistry, 196(1), 106-112. doi:10.1016/j.jphotochem.2007.11.023Mturi, G. J., & Martincigh, B. S. (2008). Photostability of the sunscreening agent 4-tert-butyl-4′-methoxydibenzoylmethane (avobenzone) in solvents of different polarity and proticity. Journal of Photochemistry and Photobiology A: Chemistry, 200(2-3), 410-420. doi:10.1016/j.jphotochem.2008.09.007Paris, C., Lhiaubet-Vallet, V., Jiménez, O., Trullas, C., & Miranda, M. Á. (2009). A Blocked Diketo Form of Avobenzone: Photostability, Photosensitizing Properties and Triplet Quenching by a Triazine-derived UVB-filter. Photochemistry and Photobiology, 85(1), 178-184. doi:10.1111/j.1751-1097.2008.00414.xYamaji, M., & Kida, M. (2013). Photothermal Tautomerization of a UV Sunscreen (4-tert-Butyl-4′-methoxydibenzoylmethane) in Acetonitrile Studied by Steady-State and Laser Flash Photolysis. The Journal of Physical Chemistry A, 117(9), 1946-1951. doi:10.1021/jp312774eOguchi-Fujiyama, N., Miyazawa, K., Kikuchi, A., & Yagi, M. (2012). Photophysical properties of dioctyl 4-methoxybenzylidenemalonate: UV-B absorber. Photochemical & Photobiological Sciences, 11(10), 1528. doi:10.1039/c2pp25101aYamaji, M., Paris, C., & Miranda, M. Á. (2010). Steady-state and laser flash photolysis studies on photochemical formation of 4-tert-butyl-4′-methoxydibenzoylmethane from its derivative via the Norrish Type II reaction in solution. Journal of Photochemistry and Photobiology A: Chemistry, 209(2-3), 153-157. doi:10.1016/j.jphotochem.2009.11.008Yamaji, M., Wakabayashi, S., Ueda, S., Shizuka, H., & Tobita, S. (2003). Laser photolysis studies of endoergonic triplet energy transfer in solution by observing the carbon–sulfur bond cleavage of triplet-sensitized naphthylmethyl phenyl sulfide. Chemical Physics Letters, 368(1-2), 41-48. doi:10.1016/s0009-2614(02)01816-xCogné-Laage, E., Allemand, J.-F., Ruel, O., Baudin, J.-B., Croquette, V., Blanchard-Desce, M., & Jullien, L. (2004). Diaroyl(methanato)boron Difluoride Compounds as Medium-Sensitive Two-Photon Fluorescent Probes. Chemistry - A European Journal, 10(6), 1445-1455. doi:10.1002/chem.200305321Košmrlj, J., Kočevar, M., & Polanc, S. (1996). A New Convenient Bromination with KBrO3/KBr/Dowex®. Synthetic Communications, 26(19), 3583-3592. doi:10.1080/00397919608003769Košmrlj, B., & Šket, B. (2007). Photocyclization of 2-Chloro-Substituted 1,3-Diarylpropan-1,3-diones to Flavones. Organic Letters, 9(20), 3993-3996. doi:10.1021/ol701654cFoerster, E. W., Grellmann, K. H., & Linschitz, H. (1973). Reaction patterns and kinetics of the photoconversion of N-methyldiphenylamine to N-methylcarbazole. Journal of the American Chemical Society, 95(10), 3108-3115. doi:10.1021/ja00791a004Hoshino, M., & Koizumi, M. (1972). Order of Quencher Participation in Photochemistry. I. Proton Transfer from the Excitedp-Hydroxybenzophenone in Mixed Solvents of Cyclohexane and Alcohols. Bulletin of the Chemical Society of Japan, 45(9), 2731-2736. doi:10.1246/bcsj.45.2731Yamaji, M., Aihara, Y., Itoh, T., Tobita, S., & Shizuka, H. (1994). Thermochemical Profiles on Hydrogen Atom Transfer from Triplet Naphthol and Proton-Induced Electron Transfer from Triplet Methoxynaphthalene to Benzophenone via Triplet Exciplexes Studied by Laser Flash Photolysis. The Journal of Physical Chemistry, 98(28), 7014-7021. doi:10.1021/j100079a021Okamoto, H., Takane, T., Gohda, S., Kubozono, Y., Sato, K., Yamaji, M., & Satake, K. (2014). Efficient Synthetic Photocyclization for Phenacenes Using a Continuous Flow Reactor. Chemistry Letters, 43(7), 994-996. doi:10.1246/cl.140182S. L. Murov , I.Carmichael and G. L.Hug, Handbook of Photochemistry, Second Edition, Revised and Expanded, Marcel Dekker, Inc., New York, 2nd edn, Revised and expanded edn., 1993Yamaji, M., Kojima, A., & Tobita, S. (2007). Stepwise Laser Photolysis Studies of β-Bond Cleavage in Highly Excited Triplet States of Biphenyl Derivatives Having C−O Bonds. The Journal of Physical Chemistry A, 111(5), 770-776. doi:10.1021/jp065782iYamaji, M. (2008). Stepwise two-color laser photolysis studies of α-cleavage in highly excited triplet states of α-acyl-4-phenylphenols. Photochemical & Photobiological Sciences, 7(6), 711. doi:10.1039/b716810aYamaji, M., Cai, X., Sakamoto, M., Fujitsuka, M., & Majima, T. (2008). Photodecomposition Profiles of β-Bond Cleavage of Phenylphenacyl Derivatives in the Higher Triplet Excited States during Stepwise Two-Color Two-Laser Flash Photolysis. The Journal of Physical Chemistry A, 112(45), 11306-11311. doi:10.1021/jp805593mYamaji, M., Cai, X., Sakamoto, M., Fujitsuka, M., & Majima, T. (2009). α-Bond Dissociation ofp-Phenylbenzoyl Derivatives in the Higher Triplet Excited State Studied by Two-Color Two-Laser Flash Photolysis. The Journal of Physical Chemistry A, 113(9), 1696-1703. doi:10.1021/jp8098208Vendrell-Criado, V., Rodríguez-Muñiz, G. M., Yamaji, M., Lhiaubet-Vallet, V., Cuquerella, M. C., & Miranda, M. A. (2013). Two-Photon Chemistry from Upper Triplet States of Thymine. Journal of the American Chemical Society, 135(44), 16714-16719. doi:10.1021/ja408997jDauben, W. G., Salem, L., & Turro, N. J. (1975). Classification of photochemical reactions. Accounts of Chemical Research, 8(2), 41-54. doi:10.1021/ar50086a00

    Synthesis of highly stable metal-containing extra-large-pore molecular sieves

    Full text link
    [EN] The isomorphic substitution of two different metals (Mg and Co) within the framework of the ITQ-51 zeotype (IFO structure) using bulky aromatic proton sponges as organic structure-directing agents (OSDAs) has allowed the synthesis of different stable metal-containing extra-large-pore zeotypes with high pore accessibility and acidity. These metal-containing extra-large-pore zeolites, named MgITQ-51 and CoITQ-51, have been characterized by different techniques, such as powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, UV-Vis spectroscopy, temperature programmed desorption of ammonia and Fourier transform infrared spectroscopy, to study their physico-chemical properties. The characterization confirms the preferential insertion of Mg and Co atoms within the crystalline structure of the ITQ-51 zeotype, providing high Bronsted acidity, and allowing their use as efficient heterogeneous acid catalysts in industrially relevant reactions involving bulky organic molecules.Financial support by the Spanish Government-MINECO through 'Severo Ochoa' (SEV 2012-0267), Consolider Ingenio 2010-Multicat and MAT2012-37160 is acknowledged. The European Union is also acknowledged by the SynCatMatch project (ERC-AdG-2014-671093).Martínez Franco, R.; Paris-Carrizo, CG.; Moliner Marin, M.; Corma Canós, A. (2016). Synthesis of highly stable metal-containing extra-large-pore molecular sieves. Philosophical Transactions A: Mathematical, Physical and Engineering Sciences. 374(2061). https://doi.org/10.1098/rsta.2015.0075S3742061Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713Davis, M. E. (1997). The Quest For Extra-Large Pore, Crystalline Molecular Sieves. Chemistry - A European Journal, 3(11), 1745-1750. doi:10.1002/chem.19970031104Davis, M. E. (2002). Ordered porous materials for emerging applications. Nature, 417(6891), 813-821. doi:10.1038/nature00785Corma, A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216(1-2), 298-312. doi:10.1016/s0021-9517(02)00132-xCorma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238Davis, M. E., Saldarriaga, C., Montes, C., Garces, J., & Crowdert, C. (1988). A molecular sieve with eighteen-membered rings. Nature, 331(6158), 698-699. doi:10.1038/331698a0Corma, A., & Davis, M. E. (2004). Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures. ChemPhysChem, 5(3), 304-313. doi:10.1002/cphc.200300997Martinez-Franco, R., Moliner, M., Yun, Y., Sun, J., Wan, W., Zou, X., & Corma, A. (2013). Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents. Proceedings of the National Academy of Sciences, 110(10), 3749-3754. doi:10.1073/pnas.1220733110Staab, H. A., & Saupe, T. (1988). ?Proton Sponges? and the Geometry of Hydrogen Bonds: Aromatic Nitrogen Bases with Exceptional Basicities. Angewandte Chemie International Edition in English, 27(7), 865-879. doi:10.1002/anie.198808653Corma, A., Diaz-Cabanas, M. J., Jiang, J., Afeworki, M., Dorset, D. L., Soled, S. L., & Strohmaier, K. G. (2010). Extra-large pore zeolite (ITQ-40) with the lowest framework density containing double four- and double three-rings. Proceedings of the National Academy of Sciences, 107(32), 13997-14002. doi:10.1073/pnas.1003009107(s. f.). doi:10.1021/jp027447Martínez-Franco, R., Sun, J., Sastre, G., Yun, Y., Zou, X., Moliner, M., & Corma, A. (2014). Supra-molecular assembly of aromatic proton sponges to direct the crystallization of extra-large-pore zeotypes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470(2166), 20140107. doi:10.1098/rspa.2014.0107Man, P. P., Briend, M., Peltre, M. J., Lamy, A., Beaunier, P., & Barthomeuf, D. (1991). A topological model for the silicon incorporation in SAPO-37 molecular sieves: Correlations with acidity and catalysis. Zeolites, 11(6), 563-572. doi:10.1016/s0144-2449(05)80006-5Wilson ST Flanigen EM. 1986 Crystalline metal aluminophosphates . U.S. Patent 4 567 029.Corà, F., Saadoune, I., & Catlow, C. R. A. (2002). Lewis Acidity in Transition-Metal-Doped Microporous Aluminophosphates. Angewandte Chemie International Edition, 41(24), 4677-4680. doi:10.1002/anie.200290013Hartmann, M., & Kevan, L. (2002). Substitution of transition metal ions into aluminophosphates and silicoaluminophosphates: characterization and relation to catalysis. Research on Chemical Intermediates, 28(7-9), 625-695. doi:10.1163/15685670260469357Šponer, J., Čejka, J., Dědeček, J., & Wichterlová, B. (2000). Coordination and properties of cobalt in the molecular sieves CoAPO-5 and -11. Microporous and Mesoporous Materials, 37(1-2), 117-127. doi:10.1016/s1387-1811(99)00258-9Singh, P. S., Shaikh, R. A., Bandyopadhyay, R., & Rao, B. S. (1995). Synthesis of CoVPI-5 with bifunctional catalytic activity. Journal of the Chemical Society, Chemical Communications, (22), 2255. doi:10.1039/c39950002255Jhung, S. H., Jin, T., Kim, Y. H., & Chang, J.-S. (2008). Phase-selective crystallization of cobalt-incorporated aluminophosphate molecular sieves with large pore by microwave irradiation. Microporous and Mesoporous Materials, 109(1-3), 58-65. doi:10.1016/j.micromeso.2007.04.031Iton, L. E., Choi, I., Desjardins, J. A., & Maroni, V. A. (1989). Stabilization of Co (III) in aluminophosphate molecular sieve frameworks. Zeolites, 9(6), 535-538. doi:10.1016/0144-2449(89)90051-1Frache, A., Gianotti, E., & Marchese, L. (2003). Spectroscopic characterisation of microporous aluminophosphate materials with potential application in environmental catalysis. Catalysis Today, 77(4), 371-384. doi:10.1016/s0920-5861(02)00381-4Yu, T., Wang, J., Shen, M., & Li, W. (2013). NH3-SCR over Cu/SAPO-34 catalysts with various acid contents and low Cu loading. Catalysis Science & Technology, 3(12), 3234. doi:10.1039/c3cy00453hYang, X., Ma, H., Xu, Z., Xu, Y., Tian, Z., & Lin, L. (2007). Hydroisomerization of n-dodecane over Pt/MeAPO-11 (Me=Mg, Mn, Co or Zn) catalysts. Catalysis Communications, 8(8), 1232-1238. doi:10.1016/j.catcom.2006.11.00

    Direct synthesis of the aluminosilicate form of the small pore CDO zeolite with novel OSDAs and the expanded polymorphs

    Full text link
    [EN] A general procedure to synthesize the Al-containing layered CDO precursor (PreCDO) is presented, allowing its preparation under broad Si/Al molar ratios by using novel pyrrole-derived organic molecules as organic structure directing agents (OSDAs). The direct calcination of the PreCDO materials results in crystalline Al-containing small-pore CDO zeolites with controlled Al species in tetrahedral coordination. In contrast, mild acid treatments on the PreCDO materials allow achieving medium-pore interlayer expanded CDO zeolites (IEZ-CDO). These expanded zeolites show high crystallinity, high porosity and controlled Si/Al molar ratios. Finally, preliminary catalytic results indicate that the Al-containing CDO and IEZ-CDO samples show good activity and selectivity for the selective catalytic reduction (SCR) of NOx, and methanol-to-olefins (MTO) processes, respectively. (C) 2017 Elsevier Inc. All rights reserved.This work has been supported by the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267) and MAT2015-71261-R programs, and by the Fundacion Ramon Areces through a research project in "Life and Materials Sciences" program. The authors thank Isabel Millet for technical support.Martínez Franco, R.; Paris, C.; Martínez-Triguero, J.; Moliner Marin, M.; Corma Canós, A. (2017). Direct synthesis of the aluminosilicate form of the small pore CDO zeolite with novel OSDAs and the expanded polymorphs. Microporous and Mesoporous Materials. 246:147-157. https://doi.org/10.1016/j.micromeso.2017.03.014S14715724

    Nitric oxide mediates vesicle trafficking of pin2 auxin transporter in Arabidopsis

    Get PDF
    Auxin is transported from cell to cell with strict directionality by uptake and efflux carrier proteins. The PIN efflux transporters exhibit polar plasma membrane (PM) localization and determine the direction and rate of intracellular auxin flow. The localization of PIN proteins is maintained by endocytosis and recycling through vesicle trafficking in a process termed constitutive cycling. Auxin itself has been shown to inhibit PIN2 endocytosis and promote PIN2 PM localization. It has been also demonstrated that SCF TIR1/AFBs complex is involved in endocytosis, recycling and PM accumulation of PIN2.Recently, it has been described that TIR1 auxin receptor is regulated by NO through S-nitrosylation. In order to study the TIR1-AFB-mediated auxin signaling pathway and its regulation by NO in the control of PIN2 localization, pharmacological and functional approaches were carried out. We presented evidence that NO affect PIN2 endocytosis. The mechanism underlying this regulation is discussed. Las auxinas se distribuyen polarmente a lo largo de la planta, por medio de transportadores específicos de influjo y eflujo. La familia de transportadores de eflujo PIN se localiza en la membrana plasmática y determina la dirección y tasa de flujo de esta hormona. Para PIN1 y PIN2, dicha localización es regulada por endocitosis y tráfico vesicular intracelular. A su vez, las auxinas inhiben la endocitosis de PIN2, promoviendo su localización en la membrana. Se ha demostrado la participación de la vía SCF TIR1/AFBs en los procesos de endocitosis, reciclado y acumulación en la membrana de las proteínas PIN. Asimismo, la vía de transducción de señales iniciada por la unión de las auxinas al receptor TIR1 se encuentra regulada por óxido nítrico (NO) mediante la S-nitrosilación de dicha proteína. Con el objetivo de profundizar el estudio de la vía de señalización por auxinas mediada por el complejo SCF TIR1/AFBs y su regulación por NO, se abordaron complementariamente los enfoques farmacológicos y de genómica funcional. Las evidencias indican que el NO afecta la endocitosis de PIN2. Se discutirán los mecanismos que subyacen en dicha regulación.Fil: Vazquez, Maria Magdalena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Colman, Silvana Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Terrile, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Otegui, M.. University of Wisconsin; Estados UnidosFil: Casalongue, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; ArgentinaFil: Paris, Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Biológicas. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Biológicas; Argentina51 Annual Meeting Argentine Society for Biochemistry and Molecular BiologyMar del PlataArgentinaSociedad Argentina de Investigación en Bioquímica y Biología Molecula

    Synthesis of Al-MTW with low Si/Al ratios by combining organic and inorganic structure directing agents

    Full text link
    [EN] A rationalized combination of alkali cations and bulky dicationic organic structure directing agents (OSDAs) has allowed the synthesis of the Al-rich MTW zeolites with Si/Al ratios of similar to 12 and large pore accessibility. Al-27 MAS NMR spectroscopy indicates that most of the aluminum atoms are in tetrahedral coordination in framework positions, and in situ infrared pyridine adsorption/desorption spectroscopy reveals strong Bronsted acidity after cationic exchange for the Al-rich MTW. In addition, another MTW material with a Si/Al ratio of 30 has been synthesized under alkali-free conditions using a bulky dicationic molecule such as OSDA, the lowest Si/Al ratio being achieved for a MTW zeolite synthesized in the absence of alkali-cations in the synthesis media. The catalytic activity of these MTW materials has been tested for the n-decane cracking reaction, achieving higher catalytic activities and olefin yields than other related large pore zeolites.Financial support from the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267), Consolider Ingenio 2010-Multicat and, MAT2012-37160 is acknowledged.Paris-Carrizo, CG.; Martín-García, N.; Martínez-Triguero, J.; Moliner Marin, M.; Corma Canós, A. (2016). Synthesis of Al-MTW with low Si/Al ratios by combining organic and inorganic structure directing agents. New Journal of Chemistry. 40(5):4140-4145. https://doi.org/10.1039/C5NJ01203AS41404145405LaPierre, R. B., Rohrman, A. C., Schlenker, J. L., Wood, J. D., Rubin, M. K., & Rohrbaugh, W. J. (1985). The framework topology of ZSM-12: A high-silica zeolite. Zeolites, 5(6), 346-348. doi:10.1016/0144-2449(85)90121-6Gies, H., & Marker, B. (1992). The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites, 12(1), 42-49. doi:10.1016/0144-2449(92)90008-dFyfe, C. A., Gies, H., Kokotailo, G. T., Marler, B., & Cox, D. E. (1990). Crystal structure of silica-ZSM-12 by the combined use of hgh-resolution solid-state MAS NMR spectroscopy and synchrotron x-ray powder diffraction. The Journal of Physical Chemistry, 94(9), 3718-3721. doi:10.1021/j100372a066Reddy, K. M., Moudrakovski, I., & Sayari, A. (1994). VS-12: a novel large-pore vanadium silicate with ZSM-12 structure. Journal of the Chemical Society, Chemical Communications, (12), 1491. doi:10.1039/c39940001491Millini, R., Frigerio, F., Bellussi, G., Pazzuconi, G., Perego, C., Pollesel, P., & Romano, U. (2003). A priori selection of shape-selective zeolite catalysts for the synthesis of 2,6-dimethylnaphthalene. Journal of Catalysis, 217(2), 298-309. doi:10.1016/s0021-9517(03)00071-xPerego, C., Amarilli, S., Millini, R., Bellussi, G., Girotti, G., & Terzoni, G. (1996). Experimental and computational study of beta, ZSM-12, Y, mordenite and ERB-1 in cumene synthesis. Microporous Materials, 6(5-6), 395-404. doi:10.1016/0927-6513(96)00037-5Jones, C. (1999). m-Xylene reactions over zeolites with unidimensional pore systems. Applied Catalysis A: General, 181(2), 289-303. doi:10.1016/s0926-860x(98)00401-3Zhang, W., & Smirniotis, P. G. (1999). Catalysis Letters, 60(4), 223-228. doi:10.1023/a:1019079612655Katovic, A., Chiche, B. H., Di Renzo, F., Giordano, G., & Fajula, F. (2000). Influence of the aluminium content on the acidity and catalytic activity of MTW-type zeolites. 12th International Congress on Catalysis, Proceedings of the 12th ICC, 857-862. doi:10.1016/s0167-2991(00)81066-6Kamimura, Y., Itabashi, K., & Okubo, T. (2012). Seed-assisted, OSDA-free synthesis of MTW-type zeolite and «Green MTW» from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 147(1), 149-156. doi:10.1016/j.micromeso.2011.05.038Kamimura, Y., Iyoki, K., Elangovan, S. P., Itabashi, K., Shimojima, A., & Okubo, T. (2012). OSDA-free synthesis of MTW-type zeolite from sodium aluminosilicate gels with zeolite beta seeds. Microporous and Mesoporous Materials, 163, 282-290. doi:10.1016/j.micromeso.2012.07.014Coulomb, J. P., & Floquet, N. (2008). Determination of zeolite closed porosity in (1D) channel systems (AFI and MTW types). Studies in Surface Science and Catalysis, 913-916. doi:10.1016/s0167-2991(08)80037-7Gopal, S., Yoo, K., & Smirniotis, P. G. (2001). Synthesis of Al-rich ZSM-12 using TEAOH as template. Microporous and Mesoporous Materials, 49(1-3), 149-156. doi:10.1016/s1387-1811(01)00412-7Araujo, A. S., Silva, A. O. S., Souza, M. J. B., Coutinho, A. C. S. L. S., Aquino, J. M. F. B., Moura, J. A., & Pedrosa, A. M. G. (2005). Crystallization of ZSM-12 Zeolite with Different Si/Al Ratio. Adsorption, 11(2), 159-165. doi:10.1007/s10450-005-4909-8Li, J., Lou, L.-L., Xu, C., & Liu, S. (2014). Synthesis, characterization of Al-rich ZSM-12 zeolite and their catalytic performance in liquid-phase tert-butylation of phenol. Catalysis Communications, 50, 97-100. doi:10.1016/j.catcom.2014.03.011Jackowski, A., Zones, S. I., Hwang, S.-J., & Burton, A. W. (2009). Diquaternary Ammonium Compounds in Zeolite Synthesis: Cyclic and PolycyclicN-Heterocycles Connected by Methylene Chains. Journal of the American Chemical Society, 131(3), 1092-1100. doi:10.1021/ja806978fCorma, A., Martı́nez-Triguero, J., Valencia, S., Benazzi, E., & Lacombe, S. (2002). IM-5: A Highly Thermal and Hydrothermal Shape-Selective Cracking Zeolite. Journal of Catalysis, 206(1), 125-133. doi:10.1006/jcat.2001.3469Marler, B., Dehnbostel, N., Eulert, H.-H., Gies, H., & Liebau, F. (1986). Studies on clathrasils VIII. Nonasils-[4158], 88SiO2 � 8M8 � 8M9 � 4M20: Synthesis, thermal properties, and crystal structure. Journal of Inclusion Phenomena, 4(4), 339-349. doi:10.1007/bf00656161Pinar, A. B., García, R., Gómez-Hortigüela, L., & Pérez-Pariente, J. (2010). Synthesis of Open Zeolite Structures from Mixtures of Tetramethylammonium and Benzylmethylalkylammonium Cations: A Step Towards Driving Aluminium Location in the Framework. Topics in Catalysis, 53(19-20), 1297-1303. doi:10.1007/s11244-010-9587-4De Baerdemaeker, T., Müller, U., & Yilmaz, B. (2011). Alkali-free synthesis of Al-MTW using 4-cyclohexyl-1,1-dimethylpiperazinium hydroxide as structure directing agent. Microporous and Mesoporous Materials, 143(2-3), 477-481. doi:10.1016/j.micromeso.2011.03.018Emeis, C. A. (1993). Determination of Integrated Molar Extinction Coefficients for Infrared Absorption Bands of Pyridine Adsorbed on Solid Acid Catalysts. Journal of Catalysis, 141(2), 347-354. doi:10.1006/jcat.1993.114

    Design and Synthesis of the Active Site Environment in Zeolite Catalysts for Selectively Manipulating Mechanistic Pathways

    Full text link
    [EN] By combining kinetics and theoretical calculations, we show here the benefits of going beyond the concept of static localized and defined active sites on solid catalysts, into a system that globally and dynamically considers the active site located in an environment that involves a scaffold structure particularly suited for a target reaction. We demonstrate that such a system is able to direct the reaction through a preferred mechanism when two of them are competing. This is illustrated here for an industrially relevant reaction, the diethylbenzene-benzene transalkylation. The zeolite catalyst (ITQ-27) optimizes location, density, and environment of acid sites to drive the reaction through the preselected and preferred diaryl-mediated mechanism, instead of the alkyl transfer pathway. This is achieved by minimizing the activation energy of the selected pathway through weak interactions, much in the way that it occurs in enzymatic catalysts. We show that ITQ-27 outperforms previously reported zeolites for the DEB-Bz transalkylation and, more specifically, industrially relevant zeolites such as faujasite, beta, and mordenite.This work was supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch), Spanish Government through "Severo Ochoa" (SEV-2016-0683, MINECO), MAT2017-82288-C2-1-P (AEI/FEDER, UE) and RTI2018-10103-B-I00 (MCIU/AEI/FEDER, UE), and by Generalitat Valenciana through AICO/2019/060. The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. Red Espanola de Supercomputacion (RES) and Servei d'Informatica de la Universitat de Valencia (SIUV) are acknowledged for computational resources and technical support. P. F. and C. Li thank ITQ for their contract.Li, C.; Ferri-Vicedo, P.; Paris, C.; Moliner Marin, M.; Boronat Zaragoza, M.; Corma Canós, A. (2021). Design and Synthesis of the Active Site Environment in Zeolite Catalysts for Selectively Manipulating Mechanistic Pathways. Journal of the American Chemical Society. 143(28):10718-10726. https://doi.org/10.1021/jacs.1c0481810718107261432

    Photocages for protection and controlled release of bioactive compounds

    Full text link
    [EN] Using a sunscreen-based photocage, we have demonstrated that it is possible to prevent photodegradation of a bioactive compound and to achieve its controlled photorelease. The concept has been proven linking avobenzone, one of the most important UVA blockers, to ketoprofen, which is a representative example of a photosensitive drug.Spanish Government (CTQ2015-70164-P, RIRAAF RETICS RD12/0013/0009, Severo Ochoa program/SEV-2012-0267 and BES-2013-066566), Generalitat Valenciana (Prometeo II/2013/005) and VLC/Campus Microcluster "Interacciones Luz-Farmaco en Sistemas Biologicos y Reacciones Adversas'' are gratefully acknowledged.Aparici-Espert, MI.; Cuquerella Alabort, MC.; Paris, C.; Lhiaubet ., VL.; Miranda Alonso, MÁ. (2016). Photocages for protection and controlled release of bioactive compounds. Chemical Communications. 52(99):14215-14218. https://doi.org/10.1039/c6cc08175dS14215142185299H. H. Tonnesen , Photostability of Drugs and Drug Formulations, CRC Press LLC, 2nd edn, 2004Rehan Zaheer, M., Gupta, A., Iqbal, J., Zia, Q., Ahmad, A., Roohi, ., … Aliev, G. (2016). Molecular Mechanisms of Drug Photodegradation and Photosensitization. Current Pharmaceutical Design, 22(7), 768-782. doi:10.2174/1381612822666151209151408Klinge, S. A., & Sawyer, G. A. (2013). Effectiveness and Safety of Topical versus Oral Nonsteroidal Anti-inflammatory Drugs: A Comprehensive Review. The Physician and Sportsmedicine, 41(2), 64-74. doi:10.3810/psm.2013.05.2016Moore, D. E. (2002). Drug-Induced Cutaneous Photosensitivity. Drug Safety, 25(5), 345-372. doi:10.2165/00002018-200225050-00004Drucker, A. M., & Rosen, C. F. (2011). Drug-Induced Photosensitivity. Drug Safety, 34(10), 821-837. doi:10.2165/11592780-000000000-00000V. Lhiaubet-Vallet and M. A.Miranda, CRC Handbook of Organic Photochemistry and Photobiology, CRC Press, Boca Raton, 3rd edn, 2012, ch. 66, vol. 2, p. 1541Bagheri, H., Lhiaubet, V., Montastruc, J. L., & Chouini-Lalanne, N. (2000). Photosensitivity to Ketoprofen. Drug Safety, 22(5), 339-349. doi:10.2165/00002018-200022050-00002Cosa, G. (2004). Photodegradation and photosensitization in pharmaceutical products: Assessing drug phototoxicity. Pure and Applied Chemistry, 76(2), 263-275. doi:10.1351/pac200476020263Karlsson, I., Persson, E., Ekebergh, A., Mårtensson, J., & Börje, A. (2014). Ketoprofen-Induced Formation of Amino Acid Photoadducts: Possible Explanation for Photocontact Allergy to Ketoprofen. Chemical Research in Toxicology, 27(7), 1294-1303. doi:10.1021/tx5001656Seto, Y., Ohtake, H., Kato, M., & Onoue, S. (2015). Phototoxic Risk Assessments on Benzophenone Derivatives: Photobiochemical Assessments and Dermal Cassette-Dosing Pharmacokinetic Study. Journal of Pharmacology and Experimental Therapeutics, 354(2), 195-202. doi:10.1124/jpet.115.223644Boscá, F., & Miranda, M. A. (1998). New Trends in Photobiology (Invited Review) Photosensitizing drugs containing the benzophenone chromophore. Journal of Photochemistry and Photobiology B: Biology, 43(1), 1-26. doi:10.1016/s1011-1344(98)00062-1Atarashi, K., Takano, M., Kato, S., Kuma, H., Nakanishi, M., & Tokura, Y. (2012). Addition of UVA-absorber butyl methoxy dibenzoylmethane to topical ketoprofen formulation reduces ketoprofen-photoallergic reaction. Journal of Photochemistry and Photobiology B: Biology, 113, 56-62. doi:10.1016/j.jphotobiol.2012.05.002Šolomek, T., Wirz, J., & Klán, P. (2015). Searching for Improved Photoreleasing Abilities of Organic Molecules. Accounts of Chemical Research, 48(12), 3064-3072. doi:10.1021/acs.accounts.5b00400Young, D. D., & Deiters, A. (2007). Photochemical control of biological processes. Org. Biomol. Chem., 5(7), 999-1005. doi:10.1039/b616410mKlán, P., Šolomek, T., Bochet, C. G., Blanc, A., Givens, R., Rubina, M., … Wirz, J. (2012). Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. Chemical Reviews, 113(1), 119-191. doi:10.1021/cr300177kYu, H., Li, J., Wu, D., Qiu, Z., & Zhang, Y. (2010). Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev., 39(2), 464-473. doi:10.1039/b901255aHerrmann, A. (2012). Using photolabile protecting groups for the controlled release of bioactive volatiles. Photochem. Photobiol. Sci., 11(3), 446-459. doi:10.1039/c1pp05231dBao, C., Zhu, L., Lin, Q., & Tian, H. (2015). Building Biomedical Materials using Photochemical Bond Cleavage. Advanced Materials, 27(10), 1647-1662. doi:10.1002/adma.201403783Pirrung, M. C. (1997). Spatially Addressable Combinatorial Libraries. Chemical Reviews, 97(2), 473-488. doi:10.1021/cr960013oPanja, S., Paul, R., Greenberg, M. M., & Woodson, S. A. (2015). Light-Triggered RNA Annealing by an RNA Chaperone. Angewandte Chemie International Edition, 54(25), 7281-7284. doi:10.1002/anie.201501658Zhao, J., Lin, S., Huang, Y., Zhao, J., & Chen, P. R. (2013). Mechanism-Based Design of a Photoactivatable Firefly Luciferase. Journal of the American Chemical Society, 135(20), 7410-7413. doi:10.1021/ja4013535Riggsbee, C. W., & Deiters, A. (2010). Recent advances in the photochemical control of protein function. Trends in Biotechnology, 28(9), 468-475. doi:10.1016/j.tibtech.2010.06.001Luo, J., Arbely, E., Zhang, J., Chou, C., Uprety, R., Chin, J. W., & Deiters, A. (2016). Genetically encoded optical activation of DNA recombination in human cells. Chemical Communications, 52(55), 8529-8532. doi:10.1039/c6cc03934kWalker, O. S., Elsässer, S. J., Mahesh, M., Bachman, M., Balasubramanian, S., & Chin, J. W. (2016). Photoactivation of Mutant Isocitrate Dehydrogenase 2 Reveals Rapid Cancer-Associated Metabolic and Epigenetic Changes. Journal of the American Chemical Society, 138(3), 718-721. doi:10.1021/jacs.5b07627Gomez, T. M., & Spitzer, N. C. (1999). In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature, 397(6717), 350-355. doi:10.1038/16927Mbatia, H. W., Dhammika Bandara, H. M., & Burdette, S. C. (2012). CuproCleav-1, a first generation photocage for Cu+. Chemical Communications, 48(43), 5331. doi:10.1039/c2cc31281fSjulson, L., & Miesenböck, G. (2008). Photocontrol of Neural Activity: Biophysical Mechanisms and Performancein Vivo. Chemical Reviews, 108(5), 1588-1602. doi:10.1021/cr078221bHorbert, R., Pinchuk, B., Davies, P., Alessi, D., & Peifer, C. (2015). Photoactivatable Prodrugs of Antimelanoma Agent Vemurafenib. ACS Chemical Biology, 10(9), 2099-2107. doi:10.1021/acschembio.5b00174Lukeman, M., & Scaiano, J. C. (2005). Carbanion-Mediated Photocages:  Rapid and Efficient Photorelease with Aqueous Compatibility. Journal of the American Chemical Society, 127(21), 7698-7699. doi:10.1021/ja0517062Cosa, G., Lukeman, M., & Scaiano, J. C. (2009). How Drug Photodegradation Studies Led to the Promise of New Therapies and Some Fundamental Carbanion Reaction Dynamics along the Way. Accounts of Chemical Research, 42(5), 599-607. doi:10.1021/ar8001969Jana, A., Nguyen, K. T., Li, X., Zhu, P., Tan, N. S., Ågren, H., & Zhao, Y. (2014). Perylene-Derived Single-Component Organic Nanoparticles with Tunable Emission: Efficient Anticancer Drug Carriers with Real-Time Monitoring of Drug Release. ACS Nano, 8(6), 5939-5952. doi:10.1021/nn501073xGoswami, P. P., Syed, A., Beck, C. L., Albright, T. R., Mahoney, K. M., Unash, R., … Winter, A. H. (2015). BODIPY-Derived Photoremovable Protecting Groups Unmasked with Green Light. Journal of the American Chemical Society, 137(11), 3783-3786. doi:10.1021/jacs.5b01297Heckman, L. M., Grimm, J. B., Schreiter, E. R., Kim, C., Verdecia, M. A., Shields, B. C., & Lavis, L. D. (2016). Design and Synthesis of a Calcium-Sensitive Photocage. Angewandte Chemie International Edition, 55(29), 8363-8366. doi:10.1002/anie.201602941Kaplan, J. H., Forbush, B., & Hoffman, J. F. (1978). Rapid photolytic release of adenosine 5’-triphosphate from a protected analog: utilization by the sodium:potassium pump of human red blood cell ghosts. Biochemistry, 17(10), 1929-1935. doi:10.1021/bi00603a020Engels, J., & Schlaeger, E. J. (1977). Synthesis, structure, and reactivity of adenosine cyclic 3’,5’-phosphate-benzyltriesters. Journal of Medicinal Chemistry, 20(7), 907-911. doi:10.1021/jm00217a008Binder, D., Bier, C., Grünberger, A., Drobietz, D., Hage-Hülsmann, J., Wandrey, G., … Drepper, T. (2016). Photocaged Arabinose: A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression. ChemBioChem, 17(4), 296-299. doi:10.1002/cbic.201500609Paris, C., Lhiaubet-Vallet, V., Jiménez, O., Trullas, C., & Miranda, M. Á. (2009). A Blocked Diketo Form of Avobenzone: Photostability, Photosensitizing Properties and Triplet Quenching by a Triazine-derived UVB-filter. Photochemistry and Photobiology, 85(1), 178-184. doi:10.1111/j.1751-1097.2008.00414.xLhiaubet-Vallet, V., Marin, M., Jimenez, O., Gorchs, O., Trullas, C., & Miranda, M. A. (2010). Filter–filter interactions. Photostabilization, triplet quenching and reactivity with singlet oxygen. Photochemical & Photobiological Sciences, 9(4), 552. doi:10.1039/b9pp00158aLiterák, J., Dostálová, A., & Klán, P. (2006). Chain Mechanism in the Photocleavage of Phenacyl and Pyridacyl Esters in the Presence of Hydrogen Donors. The Journal of Organic Chemistry, 71(2), 713-723. doi:10.1021/jo0521551Lhiaubet-Vallet, V., Belmadoui, N., Climent, M. J., & Miranda, M. A. (2007). The Long-Lived Triplet Excited State of an Elongated Ketoprofen Derivative and Its Interactions with Amino Acids and Nucleosides. The Journal of Physical Chemistry B, 111(28), 8277-8282. doi:10.1021/jp071524pLi, M.-D., Ma, J., Su, T., Liu, M., Yu, L., & Phillips, D. L. (2012). Direct Observation of Triplet State Mediated Decarboxylation of the Neutral and Anion Forms of Ketoprofen in Water-Rich, Acidic, and PBS Solutions. The Journal of Physical Chemistry B, 116(20), 5882-5887. doi:10.1021/jp301555

    Production of aromatics from biomass by computer-aided selection of the zeolite catalyst

    Full text link
    [EN] Taking into account that the transformation of biomass-derived 2,5-dimethylfuran (DMF) top-xylene involves Diels-Alder (DA) cycloaddition as the limiting step, the use of an ITQ-2 zeolite obtained by direct synthesis (DS-ITQ-2) as a catalyst for this reaction is proposed based on the fact that the organic molecule employed for its synthesis mimics the size and shape of the DA oxanorbornene cycloadduct intermediate. Periodic Density Functional Theory (DFT) calculations reveal a better stabilization of the oxanorbornene intermediate within the external hemicavities or "cups" of the DS-ITQ-2 zeolite (MWW-framework) than in other zeolites employed for this reaction, such as FAU and Beta. Interestingly, experimental results also show improved catalytic conversion values for the DS-ITQ-2 zeolite compared to FAU and Beta, in good agreement with the stabilization energies calculated by DFT. The "ab initio" catalyst design presented here to enhance the catalytic performance for the transformation of biomass-derived products is a valuable example that could be employed for the rationalization of other chemical processes catalyzed by zeolites.This work has been supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and by Spanish Government through "Severo Ochoa" (SEV-2016-0683, MINECO), MAT2017-82288-C2-1-P (AEI/FEDER, UE) and RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE). E. M. G. acknowledges "La Caixa - Severo Ochoa" International PhD Fellowships (call 2015). Elisa Garcia is acknowledged for her technical assistance in this work. The Electron Microscopy Service of the UPV is also acknowledged for their help in sample characterization. We appreciate the support of ExxonMobil Research and Engineering for their help with our efforts in fundamental catalytic research.Margarit Benavent, VJ.; Gallego, EM.; Paris, C.; Boronat Zaragoza, M.; Moliner Marin, M.; Corma Canós, A. (2020). Production of aromatics from biomass by computer-aided selection of the zeolite catalyst. Green Chemistry. 22(15):5123-5131. https://doi.org/10.1039/d0gc01031fS512351312215Owusu, P. A., & Asumadu-Sarkodie, S. (2016). A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Engineering, 3(1), 1167990. doi:10.1080/23311916.2016.1167990Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989dSettle, A. E., Berstis, L., Rorrer, N. A., Roman-Leshkóv, Y., Beckham, G. T., Richards, R. M., & Vardon, D. R. (2017). Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds. Green Chemistry, 19(15), 3468-3492. doi:10.1039/c7gc00992eWilliams, C. L., Chang, C.-C., Do, P., Nikbin, N., Caratzoulas, S., Vlachos, D. G., … Dauenhauer, P. J. (2012). Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable p-Xylene. ACS Catalysis, 2(6), 935-939. doi:10.1021/cs300011aPacheco, J. J., & Davis, M. E. (2014). Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural. Proceedings of the National Academy of Sciences, 111(23), 8363-8367. doi:10.1073/pnas.1408345111Tomás, R. A. F., Bordado, J. C. M., & Gomes, J. F. P. (2013). p-Xylene Oxidation to Terephthalic Acid: A Literature Review Oriented toward Process Optimization and Development. Chemical Reviews, 113(10), 7421-7469. doi:10.1021/cr300298jLin, Y.-C., & Huber, G. W. (2009). The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy Environ. Sci., 2(1), 68-80. doi:10.1039/b814955kDo, P. T. M., McAtee, J. R., Watson, D. A., & Lobo, R. F. (2012). Elucidation of Diels–Alder Reaction Network of 2,5-Dimethylfuran and Ethylene on HY Zeolite Catalyst. ACS Catalysis, 3(1), 41-46. doi:10.1021/cs300673bBinder, J. B., & Raines, R. T. (2009). Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. Journal of the American Chemical Society, 131(5), 1979-1985. doi:10.1021/ja808537jFitzPatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 101(23), 8915-8922. doi:10.1016/j.biortech.2010.06.125Rohling, R. Y., Tranca, I. C., Hensen, E. J. M., & Pidko, E. A. (2018). Electronic Structure Analysis of the Diels–Alder Cycloaddition Catalyzed by Alkali-Exchanged Faujasites. The Journal of Physical Chemistry C, 122(26), 14733-14743. doi:10.1021/acs.jpcc.8b04409Rohling, R. Y., Uslamin, E., Zijlstra, B., Tranca, I. C., Filot, I. A. W., Hensen, E. J. M., & Pidko, E. A. (2017). An Active Alkali-Exchanged Faujasite Catalyst for p-Xylene Production via the One-Pot Diels–Alder Cycloaddition/Dehydration Reaction of 2,5-Dimethylfuran with Ethylene. ACS Catalysis, 8(2), 760-769. doi:10.1021/acscatal.7b03343Kim, T.-W., Kim, S.-Y., Kim, J.-C., Kim, Y., Ryoo, R., & Kim, C.-U. (2016). Selective p-xylene production from biomass-derived dimethylfuran and ethylene over zeolite beta nanosponge catalysts. Applied Catalysis B: Environmental, 185, 100-109. doi:10.1016/j.apcatb.2015.11.046Chang, C.-C., Je Cho, H., Yu, J., Gorte, R. J., Gulbinski, J., Dauenhauer, P., & Fan, W. (2016). Lewis acid zeolites for tandem Diels–Alder cycloaddition and dehydration of biomass-derived dimethylfuran and ethylene to renewable p-xylene. Green Chemistry, 18(5), 1368-1376. doi:10.1039/c5gc02164bCho, H. J., Ren, L., Vattipalli, V., Yeh, Y.-H., Gould, N., Xu, B., … Fan, W. (2017). Renewablep-Xylene from 2,5-Dimethylfuran and Ethylene Using Phosphorus-Containing Zeolite Catalysts. ChemCatChem, 9(3), 398-402. doi:10.1002/cctc.201601294Zhao, R., Zhao, Z., Li, S., Parvulescu, A.-N., Müller, U., & Zhang, W. (2018). Excellent Performances of Dealuminated H-Beta Zeolites from Organotemplate-Free Synthesis in Conversion of Biomass-derived 2,5-Dimethylfuran to Renewable p -Xylene. ChemSusChem, 11(21), 3803-3811. doi:10.1002/cssc.201801504Chang, C.-C., Green, S. K., Williams, C. L., Dauenhauer, P. J., & Fan, W. (2014). Ultra-selective cycloaddition of dimethylfuran for renewable p-xylene with H-BEA. Green Chem., 16(2), 585-588. doi:10.1039/c3gc40740cLi, Y.-P., Head-Gordon, M., & Bell, A. T. (2014). Computational Study of p-Xylene Synthesis from Ethylene and 2,5-Dimethylfuran Catalyzed by H-BEA. The Journal of Physical Chemistry C, 118(38), 22090-22095. doi:10.1021/jp506664cNikbin, N., Feng, S., Caratzoulas, S., & Vlachos, D. G. (2014). p-Xylene Formation by Dehydrative Aromatization of a Diels–Alder Product in Lewis and Brønsted Acidic Zeolites. The Journal of Physical Chemistry C, 118(42), 24415-24424. doi:10.1021/jp506027fRohling, R. Y., Hensen, E. J. M., & Pidko, E. A. (2017). Multi-site Cooperativity in Alkali-Metal-Exchanged Faujasites for the Production of Biomass-Derived Aromatics. ChemPhysChem, 19(4), 446-458. doi:10.1002/cphc.201701058DEROUANE, E. (1988). Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves. Journal of Catalysis, 110(1), 58-73. doi:10.1016/0021-9517(88)90297-7Corma, A. (2004). Attempts to Fill the Gap Between Enzymatic, Homogeneous, and Heterogeneous Catalysis. Catalysis Reviews, 46(3-4), 369-417. doi:10.1081/cr-200036732Gounder, R., & Iglesia, E. (2013). The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chemical Communications, 49(34), 3491. doi:10.1039/c3cc40731dMárquez, F., García, H., Palomares, E., Fernández, L., & Corma, A. (2000). Spectroscopic Evidence in Support of the Molecular Orbital Confinement Concept:  Case of Anthracene Incorporated in Zeolites. Journal of the American Chemical Society, 122(27), 6520-6521. doi:10.1021/ja0003066Bhan, A., Allian, A. D., Sunley, G. J., Law, D. J., & Iglesia, E. (2007). Specificity of Sites within Eight-Membered Ring Zeolite Channels for Carbonylation of Methyls to Acetyls. Journal of the American Chemical Society, 129(16), 4919-4924. doi:10.1021/ja070094dBhan, A., & Iglesia, E. (2008). A Link between Reactivity and Local Structure in Acid Catalysis on Zeolites. Accounts of Chemical Research, 41(4), 559-567. doi:10.1021/ar700181tBoronat, M., Martínez-Sánchez, C., Law, D., & Corma, A. (2008). Enzyme-like Specificity in Zeolites: A Unique Site Position in Mordenite for Selective Carbonylation of Methanol and Dimethyl Ether with CO. Journal of the American Chemical Society, 130(48), 16316-16323. doi:10.1021/ja805607mGallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121Li, C., Paris, C., Martínez-Triguero, J., Boronat, M., Moliner, M., & Corma, A. (2018). Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nature Catalysis, 1(7), 547-554. doi:10.1038/s41929-018-0104-7Dessau, R. M. (1986). Catalysis of Diels–Alder reactions by zeolites. J. Chem. Soc., Chem. Commun., (15), 1167-1168. doi:10.1039/c39860001167Gallego, E. M., Paris, C., Cantín, Á., Moliner, M., & Corma, A. (2019). Conceptual similarities between zeolites and artificial enzymes. Chemical Science, 10(34), 8009-8015. doi:10.1039/c9sc02477hMargarit, V. J., Martínez-Armero, M. E., Navarro, M. T., Martínez, C., & Corma, A. (2015). Direct Dual-Template Synthesis of MWW Zeolite Monolayers. Angewandte Chemie International Edition, 54(46), 13724-13728. doi:10.1002/anie.201506822Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910Corma, A., Corell, C., & Pérez-Pariente, J. (1995). Synthesis and characterization of the MCM-22 zeolite. Zeolites, 15(1), 2-8. doi:10.1016/0144-2449(94)00013-iMin, H.-K., & Hong, S. B. (2011). Mechanistic Investigations of Ethylbenzene Disproportionation over Medium-Pore Zeolites with Different Framework Topologies. The Journal of Physical Chemistry C, 115(32), 16124-16133. doi:10.1021/jp204945cLAFORGE, S. (2004). Xylene transformation over H-MCM-22 zeolites3. Role of the three pore systems in o-, m- and p-xylene transformations. Applied Catalysis A: General, 268(1-2), 33-41. doi:10.1016/j.apcata.2004.03.027Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.175

    Cage-based small-pore catalysts for NH3-SCR prepared by combining bulky organic structure directing agents with modified zeolites as reagents

    Full text link
    [EN] It has been possible to efficiently synthesize high-silica ERI and AFX zeolites with nano-sized primary crystallites (30-200 nm). This was achieved by using a dicationic and rigid organic structure directing agent (OSDA) that fits within the large cavities of these zeolites, and the use of FAU zeolites as initial Si and Al-sources. Cu- and Fe-based ERI and AFX materials were prepared following both post-synthetic cation exchange and direct synthesis methodologies, showing good activity for the selective catalytic reduction (SCR) of nitrogen oxide using ammonia. Accelerated hydrothermal ageing of the zeolites at high temperature (i.e. 750 degrees C) shows the necessity of removing the alkali cations remaining in the zeolites to obtain stable materials. Furthermore, the catalytic performance of the prepared Cu- and Fe-containing AFX catalyst, both before and after ageing treatment, approaches the catalytic activity of Cu- and Fe-CHA. (C) 2017 Elsevier B.V. All rights reserved.This work has been supported by Haldor Topsoe A/S, by the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267), and MAT2015-71261-R, by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and by the Fundacion Ramon Areces through a research contract of the "Life and Materials Science" program. N. M. thanks MINECO for economical support through pre-doctoral fellowship (BES-2013-064347). The authors thank Isabel Millet for technical support.Martín-García, N.; Paris, C.; Vennestrom; Peter Nicolai Ravnborg; Thogersen, JR.; Corma Canós, A.; Moliner Marin, M. (2017). Cage-based small-pore catalysts for NH3-SCR prepared by combining bulky organic structure directing agents with modified zeolites as reagents. Applied Catalysis B Environmental. 217:125-136. https://doi.org/10.1016/j.apcatb.2017.05.082S12513621
    corecore