132 research outputs found

    Stage-variations of anandamide hydrolase activity in the mouse uterus during the natural oestrus cycle

    Get PDF
    Recent studies have demonstrated that the endogenous cannabinoids are important modulators of fertility in mammals. In particular, a role of the endocannabinoid system in early stages of embryo development, oviductal transport of embryos, pregnancy maintenance and labour has been demonstrated in rodents and/or in humans. In the present paper, we report the analysis of FAAH activity and protein content in the mouse uterus as a function of the natural oestrus cycle stages. Variations of FAAH activity are discussed in relationship to changes in sex steroid levels and to the possible action of AEA on remodelling of uterine tissues

    Junctional Adhesion Molecule 2 Mediates the Interaction between Hatched Blastocyst and Luminal Epithelium: Induction by Progesterone and LIF

    Get PDF
    National Basic Research Program of China [2011CB944402]; National Natural Science Foundation of China [30930013, 31071276]Background: Junctional adhesion molecule 2 (Jam2) is a member of the JAM superfamily. JAMs are localized at intercellular contacts and participated in the assembly and maintenance of junctions, and control of cell permeability. Because Jam2 is highly expressed in the luminal epithelium on day 4 of pregnancy, this study was to determine whether Jam2 plays a role in uterine receptivity and blastocyst attachment in mouse uterus. Methodology/Principal Findings: Jam2 is highly expressed in the uterine luminal epithelium on days 3 and 4 of pregnancy. Progesterone induces Jam2 expression in ovariectomized mice, which is blocked by progesterone antagonist RU486. Jam2 expression on day 4 of pregnancy is also inhibited by RU486 treatment. Leukemia inhibitory factor (LIF) up-regulates Jam2 protein in isolated luminal epithelium from day 4 uterus, which is blocked by S3I-201, a cell-permeable inhibitor for Stat3 phosphorylation. Under adhesion assay, recombinant Jam2 protein increases the rate of blastocyst adhesion. Both soluble recombinant Jam2 and Jam3 can reverse this process. Conclusion: Jam2 is highly expressed in the luminal epithelium of receptive uterus and up-regulated by progesterone and LIF via tyrosine phosphorylation of Stat3. Jam2 may play a role in the interaction between hatched blastocyst and receptive uterus

    The Effect of Anandamide on Uterine Nitric Oxide Synthase Activity Depends on the Presence of the Blastocyst

    Get PDF
    Nitric oxide production, catalyzed by nitric oxide synthase (NOS), should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot−1 h−1) compared to days 4 (0.34±0.03) and 5 (0.35±0.02) of pregnancy and to day 6 implantation sites (0.33±0.01). This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA), an endocannabinoid, binds to cannabinoid receptors type 1 (CB1) and type 2 (CB2), and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA) and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04) and URB-597 (1.08±0.09 vs 0.83±0.06) inhibited NOS activity in the absence of a blastocyst (pseudopregnancy) through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05). While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02), a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01). Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These data establish cannabinoid receptors as an interesting target for the treatment of implantation deficiencies

    Involvement of microRNA Lethal-7a in the Regulation of Embryo Implantation in Mice

    Get PDF
    MicroRNAs interact with multiple mRNAs resulting in their degradation and/or translational repression. This report used the delayed implantation model to determine the role of miRNAs in blastocysts. Dormant blastocysts in delayed implanting mice were activated by estradiol. Differential expression of 45 out of 238 miRNAs examined was found between the dormant and the activated blastocysts. Five of the nine members of the microRNA lethal-7 (let-7) family were down-regulated after activation. Human blastocysts also had a low expression of let-7 family. Forced-expression of a family member, let-7a in mouse blastocysts decreased the number of implantation sites (let-7a: 1.1±0.4; control: 3.8±0.4) in vivo, and reduced the percentages of blastocyst that attached (let-7a: 42.0±8.3%; control: 79.0±5.1%) and spreaded (let-7a: 33.5±2.9%; control: 67.3±3.8%) on fibronectin in vitro. Integrin-β3, a known implantation-related molecule, was demonstrated to be a target of let-7a by 3′-untranslated region reporter assay in cervical cancer cells HeLa, and Western blotting in mouse blastocysts. The inhibitory effect of forced-expression of let-7a on blastocyst attachment and outgrowth was partially nullified in vitro and in vivo by forced-expression of integrin-β3. This study provides the first direct evidence that let-7a is involved in regulating the implantation process partly via modulation of the expression of integrin-β3. (200 words)

    EGF increases expression and activity of PAs in preimplantation rat embryos and their implantation rate

    Get PDF
    BACKGROUND: Embryo implantation plays a major role in embryogenesis and the outcome of pregnancy. Plasminogen activators (PAs) have been implicated in mammalian fertilization, early stages of development and embryo implantation. As in-vitro developing embryos resulted in lower implantation rate than those developed in-vivo we assume that a reduced PAs activity may be involved. In the present work we studied the effect of EGF on PAs activity, quantity and embryo implantation. METHODS: Zygotes were flushed from rat oviducts on day one of pregnancy and grown in-vitro in R1ECM supplemented with EGF (10 ng/ml) and were grown up to the blastocyst stage. The control groups were grown in the same medium without EGF. The distribution and quantity of the PAs were examined using fluorescence immunohistochemistry followed by measurement of PAs activity using the chromogenic assay. Implantation rate was studied using the embryo donation model. RESULTS: PAs distribution in the embryos was the same in EGF treated and untreated embryos. Both PAs were localized in the blastocysts' trophectoderm, supporting the assumption that PAs play a role in the implantation process in rats. EGF increased the quantity of uPA at all stages studied but the 8-cell stage as compared with controls. The tissue type PA (tPA) content was unaffected except the 8-cell stage, which was increased. The activity of uPA increased gradually towards the blastocyst stage and more so due to the presence of EGF. The activity of tPA did not vary with the advancing developmental stages although it was also increased by EGF. The presence of EGF during the preimplantation development doubled the rate of implantation of the treated group as compared with controls

    Loss of Cannabinoid Receptor CB1 Induces Preterm Birth

    Get PDF
    Preterm birth accounting approximate 10% of pregnancies in women is a tremendous social, clinical and economic burden. However, its underlying causes remain largely unknown. Emerging evidence suggests that endocannabinoid signaling via cannabinoid receptor CB1 play critical roles in multiple early pregnancy events in both animals and humans. Since our previous studies demonstrated that loss of CB1 defers the normal implantation window in mice, we surmised that CB1 deficiency would influence parturition events.Exploiting mouse models with targeted deletion of Cnr1, Cnr2 and Ptgs1 encoding CB1, CB2 and cyclooxygenase-1, respectively, we examined consequences of CB1 or CB2 silencing on the onset of parturition. We observed that genetic or pharmacological inactivation of CB1, but not CB2, induced preterm labor in mice. Radioimmunoassay analysis of circulating levels of ovarian steroid hormones revealed that premature birth resulting from CB1 inactivation is correlated with altered progesterone/estrogen ratios prior to parturition. More strikingly, the phenotypic defects of prolonged pregnancy length and parturition failure in mice missing Ptgs1 were corrected by introducing CB1 deficiency into Ptgs1 null mice. In addition, loss of CB1 resulted in aberrant secretions of corticotrophin-releasing hormone and corticosterone during late gestation. The pathophysiological significance of this altered corticotrophin-releasing hormone-driven endocrine activity in the absence of CB1 was evident from our subsequent findings that a selective corticotrophin-releasing hormone antagonist was able to restore the normal parturition timing in Cnr1 deficient mice. In contrast, wild-type females receiving excessive levels of corticosterone induced preterm birth.CB1 deficiency altering normal progesterone and estrogen levels induces preterm birth in mice. This defect is independent of prostaglandins produced by cyclooxygenase-1. Moreover, CB1 inactivation resulted in aberrant corticotrophin-releasing hormone and corticosterone activities prior to parturition, suggesting that CB1 regulates labor by interacting with the corticotrophin-releasing hormone-driven endocrine axis

    CB1 Expression Is Attenuated in Fallopian Tube and Decidua of Women with Ectopic Pregnancy

    Get PDF
    BACKGROUND: Embryo retention in the Fallopian tube (FT) is thought to lead to ectopic pregnancy (EP), a considerable cause of morbidity. In mice, genetic/pharmacological silencing of cannabinoid receptor Cnr1, encoding CB1, causes retention of embryos in the oviduct. The role of the endocannabinoids in tubal implantation in humans is not known. METHODS AND FINDINGS: Timed FT biopsies (n = 18) were collected from women undergoing gynecological procedures for benign conditions. Endometrial biopsies and whole blood were collected from women undergoing surgery for EP (n = 11); management of miscarriage (n = 6), and termination of pregnancy (n = 8). Using RT-PCR and immunohistochemistry, CB1 mRNA and protein expression levels/patterns were examined in FT and endometrial biopsies. The distribution of two polymorphisms of CNR1 was examined by TaqMan analysis of genomic DNA from the whole blood samples. In normal FT, CB1 mRNA was higher in luteal compared to follicular-phase (p<0.05). CB1 protein was located in smooth muscle of the wall and of endothelial vessels, and luminal epithelium of FT. In FT from women with EP, CB1 mRNA expression was low. CB1 mRNA expression was also significantly lower (p<0.05) in endometrium of women with EP compared to intrauterine pregnancies (IUP). Although of 1359G/A (rs1049353) polymorphisms of CNR1 gene suggests differential distribution of genotypes between the small, available cohorts of women with EP and those with IUP, results were not statistically significant. CONCLUSIONS: CB1 mRNA shows temporal variation in expression in human FT, likely regulated by progesterone. CB1 mRNA is expressed in low levels in both the FT and endometrium of women with EP. We propose that aberrant endocannabinoid-signaling in human FT leads to EP. Furthermore, our finding of reduced mRNA expression along with a possible association between polymorphism genotypes of the CNR1 gene and EP, suggests a possible genetic predisposition to EP that warrants replication in a larger sample pool

    Inhibition of Histone Deacetylase Activity in Human Endometrial Stromal Cells Promotes Extracellular Matrix Remodelling and Limits Embryo Invasion

    Get PDF
    Invasion of the trophoblast into the maternal decidua is regulated by both the trophoectoderm and the endometrial stroma, and entails the action of tissue remodeling enzymes. Trophoblast invasion requires the action of metalloproteinases (MMPs) to degrade extracellular matrix (ECM) proteins and in turn, decidual cells express tissue inhibitors of MMPs (TIMPs). The balance between these promoting and restraining factors is a key event for the successful outcome of pregnancy. Gene expression is post-transcriptionally regulated by histone deacetylases (HDACs) that unpacks condensed chromatin activating gene expression. In this study we analyze the effect of histone acetylation on the expression of tissue remodeling enzymes and activity of human endometrial stromal cells (hESCs) related to trophoblast invasion control. Treatment of hESCs with the HDAC inhibitor trichostatin A (TSA) increased the expression of TIMP-1 and TIMP-3 while decreased MMP-2, MMP-9 and uPA and have an inhibitory effect on trophoblast invasion. Moreover, histone acetylation is detected at the promoters of TIMP-1 and TIMP-3 genes in TSA-treated. In addition, in an in vitro decidualized hESCs model, the increase of TIMP-1 and TIMP-3 expression is associated with histone acetylation at the promoters of these genes. Our results demonstrate that histone acetylation disrupt the balance of ECM modulators provoking a restrain of trophoblast invasion. These findings are important as an epigenetic mechanism that can be used to control trophoblast invasion

    Molecular mechanisms in uterine epithelium during trophoblast binding: the role of small GTPase RhoA in human uterine Ishikawa cells

    Get PDF
    BACKGROUND: Embryo implantation requires that uterine epithelium develops competence to bind trophoblast to its apical (free) poles. This essential element of uterine receptivity seems to depend on a destabilisation of the apico-basal polarity of endometrial epithelium. Accordingly, a reorganisation of the actin cytoskeleton regulated by the small GTPase RhoA plays an important role in human uterine epithelial RL95-2 cells for binding of human trophoblastoid JAR cells. We now obtained new insight into trophoblast binding using human uterine epithelial Ishikawa cells. METHODS: Polarity of Ishikawa cells was investigated by electron microscopy, apical adhesiveness was tested by adhesion assay. Analyses of subcellular distribution of filamentous actin (F-actin) and RhoA in apical and basal cell poles were performed by confocal laser scanning microscopy (CLSM) with and without binding of JAR spheroids as well as with and without inhibition of small Rho GTPases by Clostridium difficile toxin A (toxin A). In the latter case, subcellular distribution of RhoA was additionally investigated by Western blotting. RESULTS: Ishikawa cells express apical adhesiveness for JAR spheroids and moderate apico-basal polarity. Without contact to JAR spheroids, significantly higher signalling intensities of F-actin and RhoA were found at the basal as compared to the apical poles in Ishikawa cells. RhoA was equally distributed between the membrane fraction and the cytosol fraction. Levels of F-actin and RhoA signals became equalised in the apical and basal regions upon contact to JAR spheroids. After inhibition of Rho GTPases, Ishikawa cells remained adhesive for JAR spheroids, the gradient of fluorescence signals of F-actin and RhoA was maintained while the amount of RhoA was reduced in the cytosolic fraction with a comparable increase in the membrane fraction. CONCLUSION: Ishikawa cells respond to JAR contact as well as to treatment with toxin A with rearrangement of F-actin and small GTPase RhoA but seem to be able to modify signalling pathways in a way not elucidated so far in endometrial cells. This ability may be linked to the degree of polar organisation observed in Ishikawa cells indicating an essential role of cell phenotype modification in apical adhesiveness of uterine epithelium for trophoblast in vivo
    • …
    corecore