73 research outputs found

    Miniaturization optimized weapon killing power during the social stress of late pre-contact North America (AD 600-1600)

    Get PDF
    Before Europeans arrived to Eastern North America, prehistoric, indigenous peoples experienced a number of changes that culminated in the development of sedentary, maize agricultural lifeways of varying complexity. Inherent to these lifeways were several triggers of social stress including population nucleation and increase, intergroup conflict (warfare), and increased territoriality. Here, we examine whether this period of social stress co-varied with deadlier weaponry, specifically, the design of the most commonly found prehistoric archery component in late pre-contact North America: triangular stone arrow tips (TSAT). The examination of modern metal or carbon projectiles, arrows, and arrowheads has demonstrated that smaller arrow tips penetrate deeper into a target than do larger ones. We first experimentally confirm that this relationship applies to arrow tips made from stone hafted onto shafts made from wood. We then statistically assess a large sample (n = 742) of late pre-contact TSAT and show that these specimens are extraordinarily small. Thus, by miniaturizing their arrow tips, prehistoric people in Eastern North America optimized their projectile weaponry for maximum penetration and killing power in warfare and hunting. Finally, we verify that these functional advantages were selected across environmental and cultural boundaries. Thus, while we cannot and should not rule out stochastic, production economizing, or non-adaptive cultural processes as an explanation for TSAT, overall our results are consistent with the hypothesis that broad, socially stressful demographic changes in late pre-contact Eastern North America resulted in the miniaturization–and augmented lethality–of stone tools across the region

    Heat treatment significantly increases the sharpness of silcrete stone tools

    Get PDF
    Humans were regularly heat-treating stone tool raw materials as early as 130,000 years ago. The late Middle Stone Age (MSA) and Late Stone Age (LSA) of South Africa's Western Cape region provides some of the earliest and most pervasive archaeological evidence for this behaviour. While archaeologists are beginning to understand the flaking implications of raw material heat treatment, its potential functional benefits remain unanswered. Using silcrete from the Western Cape region, we investigate the impact of heat treatment on stone tool cutting performance. We quantify the sharpness of silcrete in its natural, unheated form, before comparing it with silcrete heated in three different conditions. Results show that heat-treated silcrete can be significantly sharper than unheated alternatives, with cutting forces halving and energy requirements reducing by approximately two-thirds. The data suggest that silcrete may have been heat treated during the South African MSA and LSA to increase the sharpness and performance of stone cutting edges. This early example of material engineering has implications for understanding Stone Age populations’ technological capabilities, inventiveness and raw material choices. We predict that heat-treatment behaviours in other prehistoric and ethnographic contexts may also be linked to increases in edge sharpness and concerns about functional performance

    Controlled experiments in lithic technology and function

    Get PDF
    From the earliest manifestations of tool production, technologies have played a fundamental role in the acquisition of different resources and are representative of daily activities in the lives of ancient humans, such as hunting (stone-tipped spears) and meat processing (chipped stone tools) (Lombard 2005; McPherron et al. 2010; Lombard and Phillipson 2010; Brown et al. 2012; Wilkins et al. 2012; Sahle et al. 2013; Joordens et al. 2015; Ambrose 2001; Stout 2001). Yet many questions remain, such as how and why technological changes took place in earlier populations, and how technological traditions, innovations, and novelties enabled hominins to survive and disperse across the globe (Klein 2000; McBrearty and Brooks 2000; Henshilwood et al. 2001; Marean et al. 2007; Brown et al. 2012; Režek et al. 2018).Projekt DEALinfo:eu-repo/semantics/publishedVersio

    Performance of Ti/Zr and silane coating pretreatments on adhesive bonding of an automotive aluminium alloy produced using the Hot Form Quench (HFQ®) process

    No full text
    Surface pretreatments of an automotive aluminium alloy delivered in F temper and subsequently processed using Hot Form Quench (HFQ®), a novel press forming technique combining solution heat treatment, press forming and in-die quenching to produce high-strength aluminium alloys, for adhesive bonding have been explored. The performance of two commercial pretreatments including Ti/Zr and silane coatings, with either acid spray or alkaline immersion cleaning, was investigated. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) were employed to characterize the surface chemistry and topography of the alloy after pretreatments. Adhesively bonded aluminium-aluminium single lap shear joints and double cantilever beam specimens were tested to evaluate the performance of the pretreatments on the bonding strength and fracture resistance, respectively. The FTIR and TEM techniques show that the natural oxides and near-surface deformed layer have been successfully removed, but the surface cleanliness level was sensitive to the cleaning approach adopted. New Ti/Zr oxide layers or silane films have been built upon the aluminium surfaces, which confirms that sound surface conditions for adhesive bonding can be obtained for parts produced using HFQ® from F temper input material
    • …
    corecore