784 research outputs found

    On the Class II Methanol Maser Periodic Variability due to the Rotating Spiral Shocks in the Gaps of Disks Around Young Binary Stars

    Full text link
    We argue that the periodic variability of Class II methanol masers can be explained by variations of the dust temperature in the accretion disk around proto-binary star with at least one massive component. The dust temperature variations are caused by rotation of hot and dense material of the spiral shock wave in the disk central gap. The aim of this work is to show how different can be the Class II methanol maser brightness in the disk during the Moment of Maximum Illumination by the Spiral Shock material (hereafter MMISS) and the Moment when the disk is Illuminated by the Stars Only (MISO). We used the code CLOUDY (v13.02) to estimate physical conditions in the flat disk in the MISO and the MMISS. Model physical parameters of the disk were then used to estimate the brightness of 6.7, 9.9, 12.1 and 107 GHz masers at different impact parameters pp using LVG approximation. It was shown that the strong masers experience considerable brightness increase during the MMISS with respect to MISO. There can happen both flares and dips of the 107 GHz maser brightness under the MMISS conditions, depending on the properties of the system. The brightest 9.9 GHz masers in the MMISS are situated at the greater pp than the strong 6.7, 12.1 and 107 GHz masers that are situated at p<200p<200 AU. The brightness of 9.9 GHz maser in the MMISS suppressed at p<200p<200 AU and increase at p>200p>200 AU.Comment: Accepted for publication in MNRAS, 9 figure

    Properties of dwarf stars in Cygnus OB2

    Full text link
    We present the results of investigation of five stars, originally classified as dwarfs, belonging to Cyg OB2 association, their stellar and wind properties. Using both TLUSTY and CMFGEN codes we derived effective temperatures, surface gravities, chemical abundances, mass-loss rates and projected rotation velocities. Due to the fact that distance to the stars is well known, we were able to estimate their luminosities. Using evolutionary models we estimated the ages of these sample stars and find that lower mass ones - MT282 and MT343 - belong to older population of the association. Their ages are greater than 10 Myr. The ages of three other stars - MT317, MT299, MT259 - are between 4-6 Myr.Comment: 16 pages, 10 figures, accepted for publication in PAS

    Star formation in the S233 region

    Full text link
    The main objective of this paper is to study the possibility of triggered star formation on the border of the HII region S233, which is formed by a B-star. Using high-resolution spectra we determine the spectral class of the ionizing star as B0.5 V and the radial velocity of the star to be -17.5(1.4) km/s. This value is consistent with the velocity of gas in a wide field across the S233 region, suggesting that the ionizing star was formed from a parent cloud belonging to the S233 region. By studying spatial-kinematic structure of the molecular cloud in the S233 region, we detected an isolated clump of gas producing CO emission red-shifted relative to the parent cloud. In the UKIDSS and WISE images, the clump of gas coincides with the infrared source containing a compact object and bright-rimmed structure. The bright-rimmed structure is perpendicular to the direction of the ionizing star. The compact source coincides in position with IRAS source 05351+3549. All these features indicate a possibility of triggering formation of a next-generation star in the S233 region. Within the framework of a theoretical one-dimensional model we conclude that the "collect-and-collapse" process is not likely to take place in the S233 region. The presence of the bright-rimmed structure and the compact infrared source suggest that the "collapse of the pre-existing clump" process is taking place.Comment: 12 pages, 10 figure

    On the methanol emission detection in the TW Hya disc: the role of grain surface chemistry and non-LTE excitation

    Full text link
    The recent detection of gas-phase methanol (CH3_3OH) lines in the disc of TW Hya by Walsh et al. provided the first observational constraints on the complex O-bearing organic content in protoplanetary discs. The emission has a ring-like morphology, with a peak at 3050\sim 30-50 au and an inferred column density of 36×1012\sim 3-6\times10^{12} cm2^{-2}. A low CH3_3OH fractional abundance of 0.34×1011\sim 0.3-4\times 10^{-11} (with respect to H2_2) is derived, depending on the assumed vertical location of the CH3_3OH molecular layer. In this study, we use a thermo-chemical model of the TW Hya disc, coupled with the ALCHEMIC gas-grain chemical model, assuming laboratory-motivated, fast diffusivities of the surface molecules to interpret the CH3_3OH detection. Based on this disc model, we performed radiative transfer calculations with the LIME code and simulations of the observations with the CASA simulator. We found that our model allows to reproduce the observations well. The CH3_3OH emission in our model appears as a ring with radius of 60\sim60 au. Synthetic and observed line flux densities are equal within the rms noise level of observations. The synthetic CH3_3OH spectra calculated assuming local thermodynamic equilibrium (LTE) can differ by up to a factor of 3.5 from the non-LTE spectra. For the strongest lines, the differences between LTE and non-LTE flux densities are very small and practically negligible. Variations in the diffusivity of the surface molecules can lead to variations of the CH3_3OH abundance and, therefore, line flux densities by an order of magnitude.Comment: Accepted for publication in MNRAS, 8 pages, 8 figure

    Germination of pine seed in weightlessness (investigation in Kosmos 782)

    Get PDF
    An investigation was made of the orientation of aboveground and underground organs of pine plants grown from seed in weightlessness. Orientation was found to be caused by the position of the seeds relative to the substrate surface. Normal growth was manifest only for the plants grown from seed oriented with embryo toward the substrate. Differences were noted between experiment and control as to the quantitative content of nucleoli in the meristematic cells of the rootlets and the shape of cells in the cotyledonous leaflets. No complete agreement was found between data obtained in weightlessness and when gravity was compensated (clinostat treatment with horizontal rotation)

    Pine seed germination under weightlessness (a study of the Kosmos 782 satellite)

    Get PDF
    Orientation of the above and underground organs of pine plants, grown from seeds under weightlessness, was found to be determined by seed position on the substrate. Normal plant growth was observed only if the seed embryos were oriented toward the substrate. Some differences were noted between the experimental and control plants concerning the amount of nucleoli in the root meristematic cells and the cell shape in cotyledonous leaves. No complete similarity was found in experimental results obtained with plants under weightlessness and under compensated gravity. The seeds were obtained from Pinus silvestris, considered to be particularly suitable for this experiment

    Disorder-driven transition to tubular phase in anisotropic two-dimensional materials

    Full text link
    We develop a theory of anomalous elasticity in disordered two-dimensional flexible materials with orthorhombic crystal symmetry. Similar to the clean case, we predict existence of infinitely many flat phases with anisotropic bending rigidity and Young's modulus showing power-law scaling with momentum controlled by a single universal exponent the very same as in the clean isotropic case. With increase of temperature or disorder these flat phases undergo crumpling transition. Remarkably, in contrast to the isotropic materials where crumpling occurs in all spatial directions simultaneously, the anisotropic materials crumple into tubular phase. In distinction to clean case in which crumpling transition happens at unphysically high temperatures, a disorder-induced tubular crumpled phase can exist even at room-temperature conditions. Our results are applied to anisotropic atomic single layers doped by adatoms or disordered by heavy ions bombarding.Comment: 18 LaTex pages, 6 figure

    Towards detecting methanol emission in low-mass protoplanetary discs with ALMA:The role of non-LTE excitation

    Get PDF
    The understanding of organic content of protoplanetary discs is one of the main goals of the planet formation studies. As an attempt to guide the observational searches for weak lines of complex species in discs, we modelled the (sub-)millimetre spectrum of gaseous methanol (CH3_3OH), one of the simplest organic molecules, in the representative T Tauri system. We used 1+1D disc physical model coupled to the gas-grain ALCHEMIC chemical model with and without 2D-turbulent mixing. The computed CH3_3OH abundances along with the CH3_3OH scheme of energy levels of ground and excited torsional states were used to produce model spectra obtained with the non-local thermodynamic equilibrium (non-LTE) 3D line radiative transfer code LIME. We found that the modelled non-LTE intensities of the CH3_3OH lines can be lower by factor of >10>10--100100 than those calculated under assumption of LTE. Though population inversion occurs in the model calculations for many (sub-)millimetre transitions, it does not lead to the strong maser amplification and noticeably high line intensities. We identify the strongest CH3_3OH (sub-)millimetre lines that could be searched for with the Atacama Large Millimeter Array (ALMA) in nearby discs. The two best candidates are the CH3_{3}OH 5040 A+5_0-4_0~A^+ (241.791 GHz) and 5141 E5_{-1}-4_{-1}~E (241.767 GHz) lines, which could possibly be detected with the 5σ\sim5\sigma signal-to-noise ratio after 3\sim3 hours of integration with the full ALMA array.Comment: Accepted for publication in MNRAS, 15 figures, 3 table
    corecore