29 research outputs found

    Essential role of accessory subunit LYRM6 in the mechanism of mitochondrial complex I

    Get PDF
    Respiratory complex I catalyzes electron transfer from NADH to ubiquinone (Q) coupled to vectorial proton translocation across the inner mitochondrial membrane. Despite recent progress in structure determination of this very large membrane protein complex, the coupling mechanism is a matter of ongoing debate and the function of accessory subunits surrounding the canonical core subunits is essentially unknown. Concerted rearrangements within a cluster of conserved loops of central subunits NDUFS2 (beta 1-beta 2(S2) loop), ND1 (TMH5-6(ND1) loop) and ND3 (TMH1-2(ND3) loop) were suggested to be critical for its proton pumping mechanism. Here, we show that stabilization of the TMH1-2(ND3) loop by accessory subunit LYRM6 (NDUFA6) is pivotal for energy conversion by mitochondrial complex I. We determined the high-resolution structure of inactive mutant F89A(LYRM6) of eukaryotic complex I from the yeast Yarrowia lipolytica and found long-range structural changes affecting the entire loop cluster. In atomistic molecular dynamics simulations of the mutant, we observed conformational transitions in the loop cluster that disrupted a putative pathway for delivery of substrate protons required in Q redox chemistry. Our results elucidate in detail the essential role of accessory subunit LYRM6 for the function of eukaryotic complex I and offer clues on its redox-linked proton pumping mechanism. Respiratory complex I plays a key role in energy metabolism. Cryo-EM structure of a mutant accessory subunit LYRM6 from the yeast Yarrowia lipolytica and molecular dynamics simulations reveal conformational changes at the interface between LYRM6 and subunit ND3, propagated further into the complex. These findings offer insight into the mechanism of proton pumping by respiratory complex I.Peer reviewe

    High-resolution cryo-EM structures of respiratory complex I : Mechanism, assembly, and disease

    Get PDF
    Respiratory complex I is a redox-driven proton pump, accounting for a large part of the electrochemical gradient that powers mitochondrial adenosine triphosphate synthesis. Complex I dysfunction is associated with severe human diseases. Assembly of the one-megadalton complex I in the inner mitochondrial membrane requires assembly factors and chaperones. We have determined the structure of complex I from the aerobic yeast Yarrowia lipolytica by electron cryo-microscopy at 3.2-angstrom resolution. A ubiquinone molecule was identified in the access path to the active site. The electron cryo-microscopy structure indicated an unusual lipid-protein arrangement at the junction of membrane and matrix arms that was confirmed by molecular simulations. The structure of a complex I mutant and an assembly intermediate provide detailed molecular insights into the cause of a hereditary complex I-linked disease and complex I assembly in the inner mitochondrial membrane.Peer reviewe

    High-resolution cryo-EM structures of respiratory complex I : Mechanism, assembly, and disease

    Get PDF
    Respiratory complex I is a redox-driven proton pump, accounting for a large part of the electrochemical gradient that powers mitochondrial adenosine triphosphate synthesis. Complex I dysfunction is associated with severe human diseases. Assembly of the one-megadalton complex I in the inner mitochondrial membrane requires assembly factors and chaperones. We have determined the structure of complex I from the aerobic yeast Yarrowia lipolytica by electron cryo-microscopy at 3.2-angstrom resolution. A ubiquinone molecule was identified in the access path to the active site. The electron cryo-microscopy structure indicated an unusual lipid-protein arrangement at the junction of membrane and matrix arms that was confirmed by molecular simulations. The structure of a complex I mutant and an assembly intermediate provide detailed molecular insights into the cause of a hereditary complex I-linked disease and complex I assembly in the inner mitochondrial membrane.Peer reviewe

    The ABC transporter MsbA adopts the wide inward-open conformation in E. coli cells

    Full text link
    Membrane proteins are currently investigated after detergent extraction from native cellular membranes and reconstitution into artificial liposomes or nanodiscs, thereby removing them from their physiological environment. However, to truly understand the biophysical properties of membrane proteins in a physiological environment, they must be investigated within living cells. Here, we used a spin-labeled nanobody to interrogate the conformational cycle of the ABC transporter MsbA by double electron-electron resonance. Unexpectedly, the wide inward-open conformation of MsbA, commonly considered a nonphysiological state, was found to be prominently populated in Escherichia coli cells. Molecular dynamics simulations revealed that extensive lateral portal opening is essential to provide access of its large natural substrate core lipid A to the binding cavity. Our work paves the way to investigate the conformational landscape of membrane proteins in cells

    Essentielle Schritte im Energiestoffwechsel von Archaeen : Heterodisulfid-Reduktase und dissimilatorische Sulfit-Reduktase

    No full text
    In dieser Arbeit wurden zwei Schlüsselenzyme des Energiestoffwechsels in Archaeen im Hinblick auf ihre funktionellen, spektroskopischen und strukturellen Eigenschaften untersucht. Die Heterodisulfid-Reduktase (Hdr) katalysiert die Reduktion des terminalen Elektronenakzeptors CoM-S-S-CoB zu CoM-SH (Coenzym M) und CoB-SH (Coenzym B) und spielt eine Schlüsselrolle im zentralen Energie-konservierenden Prozess von methanogenen Archaeen. Hdr existiert in Form von zwei unterschiedlichen Enzymen: HdrDE und HdrABC. Beide weisen ein charakteristisches Cystein-reiches Sequenzmotiv (CCG-Domäne) auf, welches als Bindestelle für ein ungewöhliches [4Fe-4S]-Zentrum dient. Frühere Studien zeigten, dass das [4Fe-4S]-Zentrum in der Untereinheit HdrB lokalisiert ist und als zentraler Bestandteil des aktiven Zentrums die Fähigkeit besitzt, ein Thiyl-Radikal zu binden. Darauf aufbauend wurden genetische, spektroskopische und strukturelle Untersuchungen überwiegend am H2:Heterodisulfid-Oxidoreduktase-Komplex (Mvh:Hdr) aus Methanothermobacter marburgensis oder an der heterolog produzierten Untereinheit HdrB durchgeführt. Das Reinigungsprotokoll des Mvh:Hdr-Komplexes wurde für Kristallisationsexperimente und für ENDOR- und Mössbauer-spektroskopische Studien optimiert. Eine Kristallisation des Mvh:Hdr-Komplexes gelang nicht; doch konnten Kristalle der Heterodisulfid-Reduktase-assoziierten Hydrogenase (Mvh) bis zu einer Auflösung von 3.34 Å vermessen und mit Hilfe der anomalen Information der Elektronentransferweg zwischen den [Fe-S]-Clustern definiert werden. Ergänzende elektronenmikroskopische Studien zeigten einen unsymmetrischen Aufbau des Komplexes. DesWeiteren wurde die Untereinheit HdrB aus M. marburgensis in Methanosarcina acetivorans heterolog produziert und seine Funktionalität kinetisch und spektroskopisch nachgewiesen. Ferner wurde HdrB in Escherichia coli heterolog produziert und gereinigt, um Kristallisationsexperimente durchzuführen und es für ENDOR- und Mössbauer-Studien verfügbar zu machen. Um HdrB spektroskopisch zu vergleichen, wurde eine Untereinheit der Succinat:Chinon Oxidoreduktase (SdhE) aus Sulfolobus solfataricus ebenfalls heterolog in E. coli produziert und mittels ENDOR-Spektroskopie charakterisiert. Ein grundlegender Prozess des biogeochemischen Schwefelkreislaufes ist die dissimilatorische Sulfat-Reduktion, in der Sulfat (SO4 2􀀀) zu Schwefelwasserstoff (H2S) umgewandelt wird. Die dissimilatorische Sulfit-Reduktase (dSir), das Schlüsselenzym im Energiestoffwechsel der Sulfat-Reduzierer, besitzt einen einzigartigen Sirohäm-[4Fe-4S]-Cofaktor, der die Reduktion von Sulfit (SO3 2􀀀) zu H2S in einem 6-Elektronen-Schritt katalysiert. Um diesen Mechanismus zu untersuchen, wurden kinetische, spektroskopische und röntxi Zusammenfassung genkristallographische Methoden angewandt. Die Kristallstrukturen von dSir aus Archaeoglobus fulgidus wurden im Komplex mit Sulfit, Sulfid (S2􀀀), Kohlenmonoxid (CO), Cyanid (CN􀀀), Nitrit (NO2􀀀), Nitrat (NO3 􀀀) und Phosphat (PO4 3􀀀) gelöst. Aktivitätstest und analytische Studien zeigten, dass dSir von A. fulgidus neben Sulfit und Nitrit auch Thiosulfat und Trithionat reduziert und Letztere auch als Intermediate entstehen. Auf dieser Basis wurde ein 3-Stufen-Mechanismus postuliert, wobei jede Stufe aus einem 2-Elektronentransfer, einer Aufnahme von zwei Protonen und einer Dehydrationsreaktion besteht. Im Vergleich zur assimilatorischen Sulfit-Reduktase (aSir) aus E. coli zeigt die dSir-Struktur einen veränderten Substratkanal, eine Rotation des Sulfits um 60° und beträchtliche Konformationsänderungen der katalytischen Reste Arga170 und Lysa211. Aufgrund dieser Änderungen kann ausschließlich in dSir ein weiteres Sulfit-Molekül in van-der-Waals-Kontakt zum an das Sirohäm-gebundene Sulfit oder Schwefel-Sauerstoff-Zwischenprodukt platziert werden, das nötig ist, um Thiosulfat und Trithionat zu synthetisieren

    Advanced electron paramagnetic resonance on the catalytic iron-sulfur cluster bound to the CCG domain of heterodisulfide reductase and succinate: Quinone reductase

    Get PDF
    Heterodisulfide reductase (Hdr) is a key enzyme in the energy metabolism of methanogenic archaea. The enzyme catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) to the thiol coenzymesM(CoM-SH) and B (CoB-SH). Cleavage of CoM-S-S-CoB at an unusual FeS cluster reveals unique substrate chemistry. The cluster is fixed by cysteines of two cysteine-rich CCG domain sequence motifs (CX<sub>31–39</sub>CCX<sub>35–36</sub>CXXC) of subunit HdrB of the Methanothermobacter marburgensis HdrABC complex. We report on Q-band (34 GHz) <sup>57</sup>Fe electron-nuclear double resonance (ENDOR) spectroscopic measurements on the oxidized form of the cluster found in HdrABC and in two other CCG-domain-containing proteins, recombinant HdrB of Hdr from M. marburgensis and recombinant SdhE of succinate: quinone reductase from Sulfolobus solfataricus P2. The spectra at 34 GHz show clearly improved resolution arising from the absence of proton resonances and polarization effects. Systematic spectral simulations of 34 GHz data combined with previous 9 GHz data allowed the unambiguous assignment of four <sup>57</sup>Fe hyperfine couplings to the cluster in all three proteins. <sup>13</sup>C Mims ENDOR spectra of labelled CoM-SH were consistent with the attachment of the substrate to the cluster in HdrABC, whereas in the other two proteins no substrate is present. <sup>57</sup>Fe resonances in all three systems revealed unusually large <sup>57</sup>Fe ENDOR hyperfine splitting as compared to known systems. The results infer that the cluster’s unique magnetic properties arise from the CCG binding motif

    High-resolution structure and dynamics of mitochondrial complex I-Insights into the proton pumping mechanism

    Get PDF
    Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a 1-MDa membrane protein complex with a central role in energy metabolism. Redox-driven proton translocation by complex I contributes substantially to the proton motive force that drives ATP synthase. Several structures of complex I from bacteria and mitochondria have been determined, but its catalytic mechanism has remained controversial. We here present the cryo-EM structure of complex I from Yarrowia lipolytica at 2.1-angstrom resolution, which reveals the positions of more than 1600 protein-bound water molecules, of which similar to 100 are located in putative proton translocation pathways. Another structure of the same complex under steady-state activity conditions at 3.4-angstrom resolution indicates conformational transitions that we associate with proton injection into the central hydrophilic axis. By combining high-resolution structural data with site-directed mutagenesis and large-scale molecular dynamic simulations, we define details of the proton translocation pathways and offer insights into the redox-coupled proton pumping mechanism of complex I.Peer reviewe
    corecore