Essentielle Schritte im Energiestoffwechsel von Archaeen : Heterodisulfid-Reduktase und dissimilatorische Sulfit-Reduktase

Abstract

In dieser Arbeit wurden zwei Schlüsselenzyme des Energiestoffwechsels in Archaeen im Hinblick auf ihre funktionellen, spektroskopischen und strukturellen Eigenschaften untersucht. Die Heterodisulfid-Reduktase (Hdr) katalysiert die Reduktion des terminalen Elektronenakzeptors CoM-S-S-CoB zu CoM-SH (Coenzym M) und CoB-SH (Coenzym B) und spielt eine Schlüsselrolle im zentralen Energie-konservierenden Prozess von methanogenen Archaeen. Hdr existiert in Form von zwei unterschiedlichen Enzymen: HdrDE und HdrABC. Beide weisen ein charakteristisches Cystein-reiches Sequenzmotiv (CCG-Domäne) auf, welches als Bindestelle für ein ungewöhliches [4Fe-4S]-Zentrum dient. Frühere Studien zeigten, dass das [4Fe-4S]-Zentrum in der Untereinheit HdrB lokalisiert ist und als zentraler Bestandteil des aktiven Zentrums die Fähigkeit besitzt, ein Thiyl-Radikal zu binden. Darauf aufbauend wurden genetische, spektroskopische und strukturelle Untersuchungen überwiegend am H2:Heterodisulfid-Oxidoreduktase-Komplex (Mvh:Hdr) aus Methanothermobacter marburgensis oder an der heterolog produzierten Untereinheit HdrB durchgeführt. Das Reinigungsprotokoll des Mvh:Hdr-Komplexes wurde für Kristallisationsexperimente und für ENDOR- und Mössbauer-spektroskopische Studien optimiert. Eine Kristallisation des Mvh:Hdr-Komplexes gelang nicht; doch konnten Kristalle der Heterodisulfid-Reduktase-assoziierten Hydrogenase (Mvh) bis zu einer Auflösung von 3.34 Å vermessen und mit Hilfe der anomalen Information der Elektronentransferweg zwischen den [Fe-S]-Clustern definiert werden. Ergänzende elektronenmikroskopische Studien zeigten einen unsymmetrischen Aufbau des Komplexes. DesWeiteren wurde die Untereinheit HdrB aus M. marburgensis in Methanosarcina acetivorans heterolog produziert und seine Funktionalität kinetisch und spektroskopisch nachgewiesen. Ferner wurde HdrB in Escherichia coli heterolog produziert und gereinigt, um Kristallisationsexperimente durchzuführen und es für ENDOR- und Mössbauer-Studien verfügbar zu machen. Um HdrB spektroskopisch zu vergleichen, wurde eine Untereinheit der Succinat:Chinon Oxidoreduktase (SdhE) aus Sulfolobus solfataricus ebenfalls heterolog in E. coli produziert und mittels ENDOR-Spektroskopie charakterisiert. Ein grundlegender Prozess des biogeochemischen Schwefelkreislaufes ist die dissimilatorische Sulfat-Reduktion, in der Sulfat (SO4 2􀀀) zu Schwefelwasserstoff (H2S) umgewandelt wird. Die dissimilatorische Sulfit-Reduktase (dSir), das Schlüsselenzym im Energiestoffwechsel der Sulfat-Reduzierer, besitzt einen einzigartigen Sirohäm-[4Fe-4S]-Cofaktor, der die Reduktion von Sulfit (SO3 2􀀀) zu H2S in einem 6-Elektronen-Schritt katalysiert. Um diesen Mechanismus zu untersuchen, wurden kinetische, spektroskopische und röntxi Zusammenfassung genkristallographische Methoden angewandt. Die Kristallstrukturen von dSir aus Archaeoglobus fulgidus wurden im Komplex mit Sulfit, Sulfid (S2􀀀), Kohlenmonoxid (CO), Cyanid (CN􀀀), Nitrit (NO2􀀀), Nitrat (NO3 􀀀) und Phosphat (PO4 3􀀀) gelöst. Aktivitätstest und analytische Studien zeigten, dass dSir von A. fulgidus neben Sulfit und Nitrit auch Thiosulfat und Trithionat reduziert und Letztere auch als Intermediate entstehen. Auf dieser Basis wurde ein 3-Stufen-Mechanismus postuliert, wobei jede Stufe aus einem 2-Elektronentransfer, einer Aufnahme von zwei Protonen und einer Dehydrationsreaktion besteht. Im Vergleich zur assimilatorischen Sulfit-Reduktase (aSir) aus E. coli zeigt die dSir-Struktur einen veränderten Substratkanal, eine Rotation des Sulfits um 60° und beträchtliche Konformationsänderungen der katalytischen Reste Arga170 und Lysa211. Aufgrund dieser Änderungen kann ausschließlich in dSir ein weiteres Sulfit-Molekül in van-der-Waals-Kontakt zum an das Sirohäm-gebundene Sulfit oder Schwefel-Sauerstoff-Zwischenprodukt platziert werden, das nötig ist, um Thiosulfat und Trithionat zu synthetisieren

    Similar works