18 research outputs found

    Agricultural emissions reduction potential by improving technical efficiency in crop production

    Get PDF
    CONTEXT: Global and national agricultural development policies normally tend to focus more on enhancing farm productivity through technological changes than on better use of existing technologies. The role of improving technical efficiency in greenhouse gas (GHG) emissions reduction from crop production is the least explored area in the agricultural sector. But improving technical efficiency is necessary in the context of the limited availability of existing natural resources (particularly land and water) and the need for GHG emission reduction from the agriculture sector. Technical efficiency gains in the production process are linked with the amount of input used nd the cost of production that determines both economic and environmental gains from the better use of existing technologies. OBJECTIVE: To assess a relationship between technical efficiency and GHG emissions and test the hypothesis that improving technical efficiency reduces GHG emissions from crop production. METHODS: This study used input-output data collected from 10,689 rice farms and 5220 wheat farms across India to estimate technical efficiency, global warming potential, and emission intensity (GHG emissions per unit of crop production) under the existing crop production practices. The GHG emissions from rice and wheat production were estimated using the CCAFS Mitigation Options Tool (CCAFS-MOT) and the technical efficiency of production was estimated through a stochastic production frontier analysis. RESULTS AND CONCLUSIONS: Results suggest that improving technical efficiency in crop production can reduce emission intensity but not necessarily total emissions. Moreover, our analysis does not support smallholders tend to be technically less efficient and the emissions per unit of food produced by smallholders can be relatively high. Alarge proportion of smallholders have high technical efficiency, less total GHG emissions, and low emissions intensity. This study indicates the levels of technical efficiency and GHG emission are largely influenced by farming typology, i.e. choice and use of existing technologies and management practices in crop cultivation. SIGNIFICANCE: This study will help to promote existing improved technologies targeting GHG emissions reduction from the agriculture production systems

    A Compendium of Key Climate Smart Agriculture Practices in Intensive Cereal Based Systems of South Asia

    Get PDF
    CSA initially proposed by FAO in 2010 at “The Hague Conference on Agriculture, Food Security and Climate Change (CC)”, to address the need for a strategy to manage agriculture and food systems, under climate change. The CSA by its original proponents describes the three objectives; i) sustainably increasing agricultural productivity to support equitable increases in incomes, food security and development; ii) adapting and building resilience to climate change from the farm to national levels; and iii) developing opportunities to reduce GHG emissions from agriculture compared with past trends. Since then, these three objectives (in short food security, adaptation and mitigation) are designated as the three “pillars” (or criteria) of CSA within the agricultural science and development communities. Climate Smart (Sustainable Management of Agricultural Resources and Techniques) Agriculture is an approach of crop production, which deals with the management of available agricultural resources with latest management practices and farm machinery, under a particular set of edaphic and environmental conditions. It works to enhance the achievement of national food security and Sustainable Development Goals (SDGs). CSA is location specific and tailored to fit the agro-ecological and socio-economic conditions of a location. CSA may be defined as “agriculture that sustainably increases productivity, resilience (adaptation), reduces/removes greenhouse gases (mitigation), and enhances achievement of national food security and development goals.” Therefore, if CSA implemented at right time with required resources, techniques and knowledge in a particular typological domain, will lead towards food security while improving adaptive capacity and mitigating potential for sustainable agriculture production

    Trade-Offs between Agricultural Production, GHG Emissions and Income in a Changing Climate, Technology, and Food Demand Scenario

    No full text
    Climate-smart agriculture targets integrated adaptation and mitigation strategies for delivering food security and greenhouse gas emissions reduction. This study outlines a methodology to identify the trade-offs between food production, emissions, and income under technology and food demand-shift scenario and climate change. The methodology uses Climate Smart Agricultural Prioritization (CSAP) toolkit a multi-objective land-use allocation model, and detailed databases, characterizing the agricultural production processes at the land-unit scale. A case study has also been demonstrated for Bihar, a state in India. The quantification of trade-offs demonstrates that under different technology growth pathways alone the food self-sufficiency for Bihar cannot be achieved whilst the reduction in emission intensity targets are achievable up to 2040. However, both food self-sufficiency and reduction in emission intensity can be achieved if we relax constraints on dietary demand and focus on kilo-calories maximization targets. The district-level analysis shows that food self-sufficiency and reduction in emission intensity targets can be achieved at a local scale through efficient crop-technology portfolios

    Not Available

    No full text
    Water footprint (WF), a comprehensive indicator of water resources appropriation, has evolved as an efficient tool to improve the management and sustainability of water resources. This study quantifies the blue and green WF of major cereals crops in India using high resolution soil and climatic datasets. A comprehensive modelling framework, consisting of Evapotranspiration based Irrigation Requirement (ETIR) tool, was developed for WF assessment. For assessing climate change impact on WF, multi-model ensemble climate change scenarios were generated using the hybrid-delta ensemble method for RCP4.5 and RCP6.0 and future period of 2030s and 2050s. The total WF of the cereal crops are projected to change in the range of − 3.2 to 6.3% under different RCPs in future periods. Although, the national level green and blue WF is projected to change marginally, distinct trends were observed for Kharif (rainy season—June to September) and rabi (winter season—October to February) crops. The blue WF of paddy is likely to decrease by 9.6%, while for wheat it may increase by 4.4% under RCP4.5 during 2050s. The green WF of rabi crops viz. wheat and maize is likely to increase in the range of 20.0 to 24.1% and 9.9 to 16.2%, respectively. This study provides insights into the influences of climate change on future water footprints of crop production and puts forth regional strategies for future water resource management. In view of future variability in the WFs, a water footprint-based optimization for relocation of crop cultivation areas with the aim of minimising the blue water use would be possible management alternative.ICA

    Not Available

    No full text
    Not AvailableLocal-scale crop yield datasets are not readily available in most of the developing world. Local-scale crop yield datasets are of great use for risk transfer and risk management in agriculture. In this article, we present a simple method for disaggregation of district-level production statistics over crop pixels by using a remote sensing approach. We also quantified the error in the disaggregated statistics to ascertain its usefulness for crop insurance purposes. The methodology development was attempted in Parbhani district of Maharashtra state with wheat and sorghum crops in the winter season. The methodology uses the ratio of Enhanced Vegetation Index (EVI) of pixel to total EVI of the crop pixels in that district corresponding to the growth phase of the crop. It resulted in the generation of crop yield maps at the 500 m resolution pixel (grid) level. The methodology was repeated to generate time-series maps of crop yield. In general, there was a good correspondence between disaggregated crop yield and sub-district level crop yields with a correlation coefficient of 0.9.CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS

    Impact of gridded weather data sources and its temporal resolution on crop evapotranspiration and effective rainfall of major crops in eastern region of India

    No full text
    Synthetic climate data are being increasingly used as key input in number of climate change impact assessment studies, hydrological assessments, and water resource management projects. The present study quantified the impact of two-gridded climate data sources [India Meteorological Department (IMD) and National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Centre (CPC)] on estimation of evapotranspiration (ET) and effective rainfall (ER) of paddy (Kharifj and wheat (Rabi) crops across four agro-ecological sub-regions, and compared the results with observed station data. The effect of daily, decadal, and monthly temporal resolutions of climatic data were evaluated on ET and ER using climatological model CROPWAT 8.0. Results showed that compared to daily resolution, the monthly temporal resolution estimated significantly higher (1.7–4.0%) ET for wheat crop. Effect of temporal resolution of climate data on ER of both crops was insignificant, implying that the uncertainties in estimation of ER emanating from use of daily, decadal, or monthly temporal resolutions would be within acceptable limits. Across the locations, the CPC-based estimates of paddy ETc deviated from (−)1.3% to 21.6% of the station ET, while the deviations for wheat ET were in the range of (−)7.1% to 9.3 per cent. Significant variations from station etc were also observed for CPC (1.7 - 19.4%) and IMD [(−)34.3 - 31.1%] based ET estimates of wheat ET. The study recommends that the technological and policy research outputs based on gridded climate data products should be carefully analysed keeping in view the uncertainty accruing on account of use of gridded data products

    Scientific Reports

    No full text
    Not AvailableWater footprint (WF), a comprehensive indicator of water resources appropriation, has evolved as an efficient tool to improve the management and sustainability of water resources. This study quantifies the blue and green WF of major cereals crops in India using high resolution soil and climatic datasets. A comprehensive modelling framework, consisting of Evapotranspiration based Irrigation Requirement (ETIR) tool, was developed for WF assessment

    Evaluation of multiple satellite precipitation products for rainfed maize production systems over Vietnam

    Get PDF
    High-resolution reliable rainfall datasets are vital for agricultural, hydrological, and weather-related applications. The accuracy of satellite estimates has a significant effect on simulation models in particular crop simulation models, which are highly sensitive to rainfall amounts, distribution, and intensity. In this study, we evaluated five widely used operational satellite rainfall estimates: CHIRP, CHIRPS, CPC, CMORPH, and GSMaP. These products are evaluated by comparing with the latest improved Vietnam-gridded rainfall data to determine their suitability for use in impact assessment models. CHIRP/S products are significantly better than CMORPH, CPC, and GsMAP with higher skill, low bias, showing a high correlation coefficient with observed data, and low mean absolute error and root mean square error. The rainfall detection ability of these products shows that CHIRP outperforms the other products with a high probability of detection (POD) scores. The performance of the different rainfall datasets in simulating maize yields across Vietnam shows that VnGP and CHIRP/S were capable of producing good estimates of average maize yields with RMSE ranging from 536 kg/ha (VnGP), 715 kg/ha (CHIRPS), 737 kg/ha (CHIRP), 759 kg/ha (GsMAP), 878 kg/ha (CMORPH) to 949 kg/ha (CPC). We illustrated that there is a potential for use of satellite rainfall estimates to overcome the issues of data scarcity in regions with sparse rain gauges

    A new two-decade (2001–2019) high-resolution agricultural primary productivity dataset for India

    Get PDF
    The present study describes a new dataset that estimates seasonally integrated agricultural gross primary productivity (GPP). Several models are being used to estimate GPP using remote sensing (RS) for regional and global studies. Using biophysical and climatic variables (MODIS, SBSS, ECWMF reanalysis etc.) and validated by crop statistics, the present study provides a new dataset of agricultural GPP for monsoon and winter seasons in India for two decades (2001–2019). This dataset (GPPCY-IN) is based on the light use efficiency (LUE) principle and applied a dynamic LUE for each year and season to capture the seasonal variations more efficiently. An additional dataset (NGPPCY-IN) is also derived from crop production statistics and RS GPP to translate district-level statistics at the pixel level. Along with validation with crop statistics, the derived dataset was also compared with in situ GPP estimations. This dataset will be useful for many applications and has been created for estimating integrated yield loss by taking GPP as a proxy compared to resource and time-consuming field-based methods for crop insurance

    Seasonal climate forecasts (SCFs) based risk management strategies: A case study of rainfed rice cultivation in India

    Get PDF
    Seasonal climate forecasts (SCFs) have gained popularity in agriculture for climate risk management studies. The available forms of SCFs are not conducive to decision making because of a mismatch in scales over space and time. In this study, available SCFs were disaggregated using the FResampler1 technique to simulate rice yield (cultivar PR 114) under different nitrogen levels and planting dates using DSSAT (Decision Support System for Agrotechnology Transfer) for Sitamarhi district, Bihar, India. Results showed that the late planting of rice predicted the highest yield (3800 kg ha-1) with high variability under SCF (wet) and 200 kg ha-1 application of nitrogen fertilizer. Similarly, for SCF (dry), the late planting of rice simulated high yield (3100 kg ha-1) attributes with 200 kg ha-1 of nitrogen fertilizer. However, rice yield under climatology (3450 kg ha-1) was more than SCF (dry) (3100 kg ha-1). Planting of rice on 15th June 2019 under the SCF (normal) predicted low uncertainty with high mean yields as compared to the mid (05th July 2019), and late (25th July 2019) planting. The present study showed that by applying SCF, we can have a better understanding on “relative” changes in yield attributes with fertilizer doses and planting dates, which may be adopted by the climate adviser to offset the climate risk without compromising productivity
    corecore