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A new two-decade (2001–2019) 
high-resolution agricultural primary 
productivity dataset for India
Prasun K. Gangopadhyay   1 ✉, Paresh B. Shirsath1, Vinay K. Dadhwal 2 & Pramod K. Aggarwal1

The present study describes a new dataset that estimates seasonally integrated agricultural gross 
primary productivity (GPP). Several models are being used to estimate GPP using remote sensing 
(RS) for regional and global studies. Using biophysical and climatic variables (MODIS, SBSS, ECWMF 
reanalysis etc.) and validated by crop statistics, the present study provides a new dataset of agricultural 
GPP for monsoon and winter seasons in India for two decades (2001–2019). This dataset (GPPCY-IN) is 
based on the light use efficiency (LUE) principle and applied a dynamic LUE for each year and season 
to capture the seasonal variations more efficiently. An additional dataset (NGPPCY-IN) is also derived 
from crop production statistics and RS GPP to translate district-level statistics at the pixel level. Along 
with validation with crop statistics, the derived dataset was also compared with in situ GPP estimations. 
This dataset will be useful for many applications and has been created for estimating integrated yield 
loss by taking GPP as a proxy compared to resource and time-consuming field-based methods for crop 
insurance.

Background & Summary
The recent IPCC report1 has once again highlighted that current climatic variability and increasing weather 
risks associated with climate change threaten agricultural production systems and food security all over the 
world. Such assessments project global crop yields project would continue to decline due to climate change; 
losses going up to 50% by the 2080 s, especially in low latitudes countries in sub-Saharan Africa and South Asia. 
Several technological, institutional and policy interventions have been proposed that can help the world to adapt 
to climate change. However, there is a need to realistically understand the vulnerability and adaptation options 
in developing countries where the landholding size of most of the farmers is small. In South Asia, for example, 
85% of farmers (>150 million farm households) have a landholding size of fewer than 2 hectares. One needs 
historical yield and weather data to understand trends in impacts and to design relevant and site-specific adap-
tation interventions such as insurance products. Multiple datasets have been developed to analyze the trends 
and temporal variation in yields that are based on the Food and Agriculture Organization of the United Nations 
(FAO)2,3, however, these datasets are not suitable to describe the spatial variation within a country4 in a finer 
scale. Particularly in the countries where landholding size is apparently small, a relatively high spatial resolution 
data is required to understand the variation and trend. Moreover, to analyze the impacts of climate change on 
crop yield long-term spatial and temporal data is required5. Most developing countries have a relatively poor 
database of location-specific weather and historical crop yield data due to associated logistics and financial costs 
and hence it becomes difficult to target adaptation interventions.

Remote sensing provides an opportunity to monitor vegetation over time and space. There is an increas-
ing availability of high spatial and temporal resolution data of vegetation indices, and climatic parameters for 
the same areas. Models based on remote sensing typically use vegetation index (VI), with other biophysical 
parameters to estimate crop vigor. Gross Primary Production (GPP) is an important indicator of assimilation 
of terrestrial carbon (C) in the biosphere to study the global carbon cycle6–9. Numerous studies are conducted 
to estimate GPP of the global biosphere, primarily they are general, and focused on forest ecosystems as their 
huge potentiality to sequestrate atmospheric CO2

10. The agricultural ecosystem has rather attained less focus, 
although it covers 15 million sq km worldwide. Though the forest ecosystem is the primary sink of atmospheric 
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CO2, the managed agro-ecosystems act as a significant sink of CO2 in the terrestrial biosphere11–13 and RS-based 
models indicate that agricultural NPP over India accounts for 55–60 percent of national NPP14. Recent studies 
take account of carbon sequestration in agriculture to allocate values in agricultural production15.

Several models are developed to estimate GPP and mainly they can be grouped as (1) Enzyme kinetic (EK) 
models16,17, (2) Empirical models18, (3) Solar-induced chlorophyll fluorescence (SIF) models8,19–21 and (4) Light 
use efficiency (LUE) models22,23. LUE models are the most preferred approach for use of RS data and have under-
gone extensive improvements and modifications which add to their accuracy and adaptability to a wide range 
of conditions24.

MODIS primary productivity (MOD17) products are significantly used worldwide for C sequestration and 
biosphere modeling, however, the limitations of over and underestimation of the product can’t be ruled out 
because of uncertainties from various upstream inputs25–27. Jiang and Ryu provided an alternative set of GPP 
datasets, namely the breathing Earth system simulator (BESS), based on a simplified process-based model28. 
Instead of standard MODIS products, BESS is capable to serve as an independent GPP dataset29. Another global 
moderate-resolution dataset of vegetation GPP for 2000–2016 was developed by Zhang et al. and it showed 
satisfactory performance across a wide range of biome types27. However, computed by different algorithms (e.g. 
MOD17) and using different input parameters (e.g. JRA-25, NECP), the performance of these GPP products 
vary widely in various climate zones30–32. Additionally, over a complex ecosystem to improve the GPP estimation 
better-quality meteorological data and land-use information on a finer spatial scale are required33.

In this paper, we have used GPP at 500 m pixel level as a proxy to develop a dataset of integrated crop pro-
ductivity for the last 20 years for India, a home base for almost 100 million smallholders with less than 2-hectare 
landholdings. We have further developed normalized integrated crop yield data at 500 m scale by downscaling 
measured historical crop yield data available at the aggregated district scale using GPP data. We expect these two 
data sets to help develop a better understanding of trends, and impacts of climatic variability on agriculture, and 
to contribute to loss estimation in the crop yields, much needed for developing improved insurance products 
and schemes. India has a large crop insurance scheme that is suffering due to the scarcity of disaggregated data 
at the village or lower scale.

Methods
To calculate agricultural GPP and validation, environmental parameters and published data were used. The 
method consisted of four steps (1) modeling GPP yield seasonally over time and extracting cropland-related 
GPP, (2) summarizing agro-GPP at the district level, (3) calibration and validation, and (4) remote sensing 
normalized GPP (Fig. 1).
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Fig. 1  Data and procedure used to calculate seasonal primary productivity and its validation.
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Study area.  For the present study, the GPP was calculated for India. With a total of 160 MHa of arable land, 
and 82 MHa of gross irrigated area, agriculture is one of the primary occupations of almost 50% of inhabitants 
and it contributes a significant share (16%) to the national GDP. The total food grain production was 297 MT in 
2020, and the gross value added by the agriculture and allied sector was USD 276 billion in the 2020 Fiscal year.

The cropping pattern of India is highly complex and varies with climatic conditions, topography and avail-
able resources. Primary it’s a rice-wheat-maize/ millet system, with a dominancy of the rice-wheat system. In 
the monsoon paddy, maize, sugarcane, millets, cotton, soybean etc., and in winter wheat, gram, mustard, and 
barley are primarily cultivated. Based on the area under cultivation and its economic importance major C3 
(castor, cotton, groundnut, pulses, pigeon pea, rice, soybean and sunflower) and C4 (finger millet, maize, pearl 
millet, sorghum and sugarcane) crops were considered for monsoon season. For the winter season, the follow-
ing C3 crops are considered: barley, chickpea, linseed, mustard, safflower, sesamum, rice and wheat, and winter 
sorghum (C4). Later, these C3 and C4 crop areas were used to generate C3/C4 fraction map for each season and 
each year. For the present study, 557 districts of India were selected. The selection of districts was based on the 
availability of data at regular intervals and major crop-producing areas.

Data used.  The online and offline datasets are available in different spatial and/ or temporal resolutions. For 
the present study LUE model, namely, Vegetation Photosynthesis Model (VPM) is used which disaggregates veg-
etation canopies into two components: photosynthetically active vegetation (PAV) and non-photosynthetic active 
vegetation (NAV)25. To calculate GPP the datasets were resampled spatially and temporally to synchronize with 
MODIS 500 m global dataset as the primary inputs e.g., vegetation index (NDVI) and land surface water index 
(LSWI) in the VPM model is derived from MODIS. The details of the data used in VPM and further analysis and 
source are presented in Table 1.

Vegetation index.  The present MODIS VI product (v06) is computed from atmospherically corrected 
bi-directional surface reflectance that has been corrected for water, clouds, heavy aerosols, and cloud shadows 
(https://lpdaac.usgs.gov/products/mod13a1v006/). The MOD13 and MYD13, are derived from MODIS TERRA 
and AQUA respectively to produce VI products. For the present study, MOD13 VI with 16-day intervals was 
used because of its availability from an earlier period than MYD13. Estimating GPP using normalized (NDVI) 
and enhanced (EVI) is common and researchers are testing other vegetation indices for performance evaluation. 
Though EVI shows better performance over high biomass conditions34, NDVI responds better in a wider range 
and is sensitive to low biomass areas35. Additionally, NDVI and GPP show better simultaneous responses in wet 
summer conditions36. In India majority of the croplands are arid/semiarid areas and rainfed, thus NDVI is the 
better choice for the present study.

Though the present method has used MODIS NDVI, a successor of MODIS such as Suomi NPP Visible 
Infrared Imaging Radiometer Suite (VIIRS) can be used. The VI products of VIIRS are available in Google Earth 
Engine as VNP13A1.

Estimating LUEMAX with C3C4 crop fraction.  The C3 and C4 plants distinctly respond differently to the 
rising CO2 concentration as well as they differ from the change in solar radiation and temperature, and physiolog-
ical functions37. In VPM model LUEMAX (ε*) is a critical factor and vegetation dependent, which can be parame-
terized as ecosystem quantum yield based on the Michaelis-Menten light response function35. Earlier studies used 
Earth Stat global major crop type distribution, SPOT vegetation products etc. to estimate C4 vegetation fraction, 
however, they are either static and do not comply with changes in cropping practice over time or coarse resolution 
(1°). To generate C4 crop faction maps to further use in LUE, the present study used district-level data of C3C4 
crops for each year for monsoon and winter seasons and resampled at 500 m resolution to integrate with MODIS 
NDVI products. To estimate LUEMAX following equation was used and calculated for each pixel, where propC3 and 
propC4 are eddy-covariance measurements of C3 and C4 crops.

LUE prop LUE prop (1)C3 C3 C4 C4ε = × + ×∗

Parameters Original data source Native resolution (m) Temporal availability

fPAR
MODIS/TERRA NDVI\

500 (calculated) 16 days
(https://lpdaac.usgs.gov/products/mod13a1v006/)

PAR Breathing Earth System Simulator (BESS) Radiation v128 5,500 Daily

Tscalar
ERA5 Daily Aggregates - Latest Climate Reanalysis, ECMWF

27,830 Daily
(https://cds.climate.copernicus.eu/cdsapp#!/home)

Wscalar
MODIS/TERRA surface reflectance

500 (calculated) 8 days
(https://doi.org/10.5067/MODIS/MOD09A1.006)46

Tmin/Tmax/Topt C3/C4 crop fraction at district level from Govt. data50 500 (calculated) Seasonal

Cropland filter Landsat40 and AWiFS41 30 and 56 One time each (2015 
and 2018 respectively)

Table 1.  Parameters and other datasets for agricultural GPP calculation.
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where, LUEC3 and propC3, LUEC4 and propC4 are maximum light use efficiency and the fraction of C3, C4 crops 
respectively. Primarily the LUEC3 and LUEC4 (1.37 gC MJ−1 APAR, and 1.64 gC MJ−1 APAR) were taken from litera-
ture35,38 and post-optimization the values of LUEC3 and LUEC4 were set to 1.388 and 1.542 gC MJ−1 APAR (this study).

Climatic variables.  The daily photosynthetically active radiation or PAR (W m−2) was obtained from BESS 
datasets (Breathing Earth System Simulator (BESS) Radiation v128 and synced with the model simulation inter-
val of 16 days. For daily daytime mean temperature, daily maximum and minimum air temperature at 2 meters 
were obtained from ERA5-Climate Reanalysis (https://cds.climate.copernicus.eu/cdsapp#!/home) was used and 
synced with model interval. Both the datasets are 27,830 m resolution and it was upscaled to 500 m to match with 
MODIS NDVI data.

Cropland mask.  Among other off-the-shelf products, MODIS LULC (MOD12) is commonly used by the 
researcher community because of its uninterrupted availability of data at high spatial (500 m) and temporal res-
olution (yearly). Though these datasets provide satisfactory estimations in global to country-level study, for a 
country like India where the majority of the agricultural land holdings are less than 1 Ha, is not the best choice39. 
For the present study Global Food Security-Support Analysis Data40 was used to extract cropland areas at 30 m 
resolution from the calculated GPP data. As observed from longtime cropland statistics published by Govt. of 
India, the temporal variation in the cropped area at the district level is insignificant and agrees with the GSFAD 
crop mask (data not shown) thus it was further used. Furthermore, this annual cropland data was rectified by 
National Remote Sensing Center (NRSC)41 seasonal crop mask (56 m) data (2018) and crop masks were created 
for both monsoon and winter seasons.

Seasonal cropland masks based on the phenology for each year would be preferable to compare modeled 
agricultural GPP with crop statistics data. However, the purpose of the study is to use a simplified and replicable 
method to increase operational feasibility, and for that, a static cropland mask was used.

Process flow in the VPM model.  The VPM model exploits the fact that photosynthetic active vegetation 
or chlorophyll (fPARchl), which is contributed by the vegetation canopies into photosynthetically active vegetation 
(PAV) and non-photosynthetic active vegetation (NPV)25. The GPP is the product of LUE, fPAR and PAR (Eq. 2). 
For fPAR, the method developed by Myneni and Williams42 was used (Eq. 3) where a = 1.24 and b = 0.16843. This 
method is based on the radiation transfer model and is reckoned to be robust in vegetation clustering, variance 
in pixels, leaf orientation and optical properties. Estimating LUE (ε) from LUEMAX (ε*) requires downregulat-
ing by temperature (Tscalar), water (Wscalar) and phenology (Pscalars) scalars (Eq. 4). Pscalar was set to 1 because of 
leaf emergency in dominant crops such as rice/wheat among the other crops considered here during rainy and 
winter seasons25. In Eq. 5, T, Tmax, Tmin and Topt are daytime mean temperatures followed by maximum, mini-
mum and optimum temperatures for the photosynthetic activity of each typical vegetation type. For C3 and C4 
crops the maximum, minimum and optimum temperatures (C) are 40, 5 and 2544; 42, 8 and 3038,45 respectively. 
For water scalar (Eq. 7) LSWI is used (Eq. 6) which is sensitive to canopy water stress and a product of NIR 
(841–876 nm) and SWIR (1628–1652 nm) bands of MODIS surface reflectance (https://doi.org/10.5067/MODIS/
MOD09A1.006)46.

GPP fPAR PAR (2)ε= × ×

= × −fPAR a NDVI b (3)

ε ε= × × ×∗ T W P (4)scalarscalar scalar

T
T T T T

T T T T T T
( ) ( )

( ) ( ) ( ) (5)
scalar

max min

max min opt
2=

− × −

− × − − −

= −
+

LSWI NIR SWIR
NIR SWIR (6)

= +
+

W LSWI
LSWI

1
1 (7)

scalar
max

Post GPP simulation for every 16 days, it was summed for the whole season and seasonal crop masks were used 
to nullify non-agricultural pixels. This simulation process was performed in Google Earth Engine cloud comput-
ing facilities. The final seasonal GPP product for two decades was calibrated and validated with yearly Govt. crop 
statistics data and named as GPPCY-IN. Since the crop production statistics data published at the district level and 
yield loss calculation required more spatially explicit input, the crop yield data was further normalized by the frac-
tion of actual GPPRS and GPPRS-Mean at pixel level and additional dataset (NGPPCY-IN prepared for 2001–2017. To 
calculate NGPPCY-IN, we have used fraction of GPPCY-IN at pixel level and mean of pixels of a district, further it 
was multiplied by the crop-combined primary productivity that was derived from the crop statistics. Reported in 
T/Ha this dataset (NGPPCY-IN) translates the district level primary productivity at pixel level.
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Data Records
The GPPCY-IN product is available at 16 days intervals at 500 m resolution. However, we have integrated it 
seasonally from 2001 to 2019 to compare with ground data (till 2017) for the monsoon (Fig. 2a) and winter 
(Fig. 2b) seasons. Additionally, the NGPPCY-IN is also prepared for 2002–2017 (not shown here). These datasets 
are available with a longitude-latitude projection under the WGS84 datum. On request, the calibration coeffi-
cients, and radiation use efficiency correction factors will be made available. Both the datasets (GPPCY-IN47 
and NGPPCY-IN47) are uploaded on ‘figshare’. In the repository, the filenames, e.g. GPPCY-IN-M2001or 
NGPPCY-IN-W2002 represent ‘agricultural GPP of India - Monsoon - 2001’ and ‘normalized GPP of India - 
Winter – 2002’ respectively.

Technical Validation
Even after taking standard precautions, satellite observations are needed to be validated with ground observa-
tions to minimize errors. In the present study district-level crop statistics data from 2001 to 2017 for monsoon 
(n = 13) and winter crops (n = 11). The selected crops cover more than 90% sown area. From crop statistics data-
sets and using literature-based values for harvest index (HI), respiration coefficient (RC) and moisture content 
(MC) seasonal GPP was estimated.

These parameters differ based on the crop, location, and season; and hence a single value cannot be rep-
resenting all cases. Here, literature-based constant values for RC and MC and the upper and lower bounds 
for HI were used. Hereafter, to obtain realistic coefficient values an optimization problem was set wherein the 
difference in GPP estimates from satellite and production data was minimized by finding optimal HI coefficient 
values for each crop, season and year. The obtained HI coefficients were then further tested against consecutive 
years’ data for independent validation. The optimization process is explained below with details on the calibra-
tion and validation process.

Optimization process.  The objective function (Z) minimizes the difference between satellite estimates of 
GPP and GPP estimated from crop production datasets by setting the values of the optimal coefficient for harvest 
index which varies for each district, crop, season and year.

∑= . . ∗
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


∗ + ∗ −
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
=
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where Z is the objective function that minimizes the difference between satellite estimated GPP and the GPP 
estimated from crop production statistics. This objective function was executed for each district independently 
for each crop season and year.

Sat.GPP is the satellite estimated GPP over the cropland.
PROD is crop production of ith crop. This production accounts for the litterfall and energy efficiency factors 

of each crop.
HI, RC and MC represent the harvest index, respiratory coefficient and moisture content, respectively for ith 

crop.
The constrained optimization was performed using MATLAB©’s fmincon function. The function fmincon 

finds a constrained minimum of a scalar function of several variables starting at an initial estimate. A set of lower 
and upper bounds was defined on the design variables so that the solution is always in the range. The lower and 
upper bounds on the harvest index were set for each crop and each district. The midpoints of lower and upper 
bounds were taken as starting points in the optimization.

Calibration and validation.  Optimal coefficient values for HI, RC, MC and radiation use efficiency were 
obtained for each year in the calibration run. During the validation, these coefficients were then applied to the 
consecutive year’s data of satellite GPP and crop production. The coefficient values obtained in the calibration run 
for a given year were used in the validation run for the next year.

Although there could be several ways of doing calibration and validation, we opted for validation based on 
the above simpler methodology. In the absence of crop statistics (mainly cropped areas) in the near-real-time, 
the previous year’s coefficients are a closer approximation since the cropped areas, cultivar/management options 
will not have drastic changes. The above method referenced over the previous cropping season remains simpler 
from the practical applicability point of view. However, there are significant variations observed year to year in 
the weather patterns and in such conditions, the assumptions based on climate analogs either in space or in time 
could have been better approximations. Nevertheless, it would increase the complexity of the process and limit 
its applicability. In the above-mentioned process, the validation run does not have any optimization. The flow 
chart of the calibration and validation process is shown in Fig. 1.

The estimated GPP from ground-level govt. data for each year was also compared with calibrated and vali-
dated (for the consecutive years) GPP at the district level (Fig. 3a,b). As the govt. has published crop statistics 
data till 2017, the calibration and validation process were confined to this year. In the monsoon season, the 
coefficient of determination (R2) between remote sensing estimated GPP was close with calibrated datasets 
(R2 = 0.86) and it was strongly agreed with next year’s ground estimated GPP during the validation (R2 = 0.77). 
For the winter season, the coefficient of determination between remote sensing and ground estimated GPP 
was 0.87 and 0.83 for calibration and validation respectively. The model optimized values of the HI and corre-
sponding average crop area in India are presented in the boxplot in Fig. 4 (except sugarcane). The mean values 
of optimized HI for different crops varied from 0.15 to 0.5; monsoon rice, winter rice and wheat had higher 
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average HI of 0.24, 0.30 and 0.32, respectively compared to other crops. The average value of HI for sugarcane 
was taken 0.69 in all areas.

In general, the dataset had better calibration and validation during the monsoon season than in the winter 
season. In the winter season, a large area in the rainfed agricultural areas stays fallow with sparse cultivation of 
minor local crops which are not often reported. Additionally, districts with dense tree cover with intermediate 
patches of croplands were also reported with high GPP, though agricultural GPP is less as per crop production 
statistics. To avoid the discrepancies and to improve the correlation between modeled and observed GPP, dis-
tricts with less than 75,000 Ha cropped areas were excluded along with the districts that have less than 30% area 

Fig. 2  GPPCY-IN over India in the monsoon season (June to October), 2001–2019 (2a) and winter season 
(November to March), 2001–2018 (2b).
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(of considered crops) of the total cropped area. These excluded districts account for 4% and 11% of the mean 
national cropped area in monsoon and winter seasons.

The normalized root mean square (nRMSE) values of monsoon seasons vary from 13% to 29% with an aver-
age of 20% for calibration years and validation years the nRMSE range is 24% to 36% with an average of 28%. 
For the winter season the mean nRMSE are 20% and 28% for calibration years and validation years respectively.

Fig. 3  Calibration (3a) and validation (3b) of GPPCY-IN with crop production database of monsoon and 
winter seasons.

https://doi.org/10.1038/s41597-022-01828-y
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Usage Notes
The calculated datasets, GPPCY-IN and NGPPCY-IN are a valuable resource to monitor crop yield trends, esti-
mate yield loss and understand the interrelationship between climate variability and extreme climatic events. 
The GPPCY-IN is available for each cropping season and can be used to estimate crop status. Once further crop 
production statistics datasets will be available, these datasets will be updated in the due course. The derived 
datasets show that the calculated GPP is capable to capture the seasonal variations in reference to GPPEC (Flux 
tower-based measurements). The open-source EC data (such as FLUXNET) primarily focused on forest/ natu-
ral vegetation, for the present study, two studies were taken as a reference that is used for dry season rice48 and 
winter wheat49. The observed GPPEC in rice and wheat were aggregated and synced with MODIS interval as in 
this study and found to be correlated with calculated GPPCY-IN (Fig. 5).

The developed datasets show a steady increase in agro-GPP over time which is well agreed with yearly crop 
production statistics data. In India, the release of yearly crop statistics is usually not available immediately at 
the end of the season, this first dataset (GPPCY-IN) could be an alternative data source to estimate integrated 
crop yield along with trends in crop production. The second product, NGPPCY-IN will serve as a proxy for crop 
yield statistics at the pixel level. NGPPCY-IN translates aggregated district-level crop statistics at the pixel level 
(ca 25 Ha), which would be a valuable resource to estimate the yield loss at comparatively higher resolution. 
Additionally, the payouts of crop insurance schemes are often delayed primarily because crop cutting for yield 
estimation a labor-intensive process. The developed datasets show GPP can be used as a proxy for integrated 
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Fig. 4  Harvest Index of selected crops for monsoon (in black) and winter season (in blue). The average value of 
HI for sugarcane was 0.69 and not shown in Fig. 4 due to scale difference. The values are arranged in decreasing 
order of average area from 2015–17. The green, brown and yellow colors represent cereals, pulses and oilseeds.

Fig. 5  Validation of cumulative 16 days estimated GPPCY-IN with measured GPP by eddy covariance approach 
(GPPEC) in winter wheat and dry season rice.
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crop yield and limiting the data collection errors on the ground together with boosting the process of loss esti-
mation. However, for operational purpose the limitations of remote sensing based observations further need 
to be calibrated with precise ground observations, such as crop-cutting experiment (CCE) in few sentinel sites.

Compared to the other global products such as MOD17A2H, GPPCY-IN shows a better correlation with 
observed data (Fig. 6). Calculated at the pixel level and aggregated at the district level, the GPPCY-IN shows a 
higher correlation compared to MOD17A2H. Anomalous behaviors have been observed in the Indo-Gangetic 
plain for two specific years (2010–11 and 2015–16), the variation is up to 30% (underestimate) at the national 
level with GPPCY-IN. Particularly in the Indo-Gangetic plain, which consists of 5 states of India with approx. 
30MHa cropland and produces 50% of the considered crops, GPPCY-IN and NGPPCY-IN show a better corre-
lation with reported crop production statistics than MOD17A2H (Fig. 7).

Users of the products should be aware of assumptions in developing GPP products that could limit its 
applications. The cropping pattern in India is extremely complex and the sowing/harvesting time varies over 
the country and significant adoption of agroforestry can happen in local areas. The present study considered 
November to March as winter crop season, however, in east India this might extend till April. The exclusion of 
minor crops that locally make a significant difference in a few districts, extended duration of crops beyond dom-
inant cropping seasons like cotton and sugarcane and lumping of coefficients across the region. Additionally, 
these seasonal GPP datasets are calculated seasonally (June to October and November to March) that exclude 

Fig. 6  Comparison of GPPCY-IN with crop production statistics, NGPPCY-IN and MOD17 datasets in La 
Nina strong (2010–11) and El Nino strong (2015–16) years. These datasets are aggregated at district level.
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the months of April and May, hence the aggregation of seasonal GPP would not represent annual GPP. The pri-
mary reason behind excluding these two months is, that in India the primary crop seasons are Monsoon (June to 
October) and Winter (November to March) and the measured crop statistics is available accordingly.

Code availability
GPPCY-IN was developed on Google Earth Engine (JavaScript) and calibration/validation was performed in 
MATLAB in the local system. A code for GPPCY-IN calculation can be found here: https://github.com/Prasun-G/
GEE-code-for-Agricultural-GPP-India.
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