86 research outputs found

    Positions, Regions, and Clusters: Strata of Granularity in Location Modelling

    Full text link
    Abstract. Location models are data structures or knowledge bases used in Ubiquitous Computing for representing and reasoning about spatial relationships between so-called smart objects, i.e. everyday objects, such as cups or buildings, containing computational devices with sensors and wireless communication. The location of an object is in a location model either represented by a region, by a coordinate position, or by a cluster of regions or positions. Qualitative reasoning in location models could advance intelligence of devices, but is impeded by incompatibilities between the representation formats: topological reasoning applies to regions; directional reasoning, to positions; and reasoning about set-membership, to clusters. We present a mathematical structure based on scale spaces giving an integrated semantics to all three types of relations and representations. The structure reflects concepts of granularity and uncertainty relevant for location modelling, and gives semantics to applications of RCC-reasoning and projection-based directional reasoning in location models

    Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec

    Get PDF
    We have characterized overstory light transmission, understory light levels, and plant communities in mixedwood boreal forests of northwestern Quebec with the objective of understanding how overstory light transmission interacts with composition and time since disturbance to influence the diversity and composition of understory vegetation, and, in turn, the further attenuation of light to the forest floor by the understory. Overstory light transmission differed among three forest types (aspen, mixed deciduous-conifer, and old cedar-dominated), with old forests having higher proportions of high light levels than aspen and mixed forests, which were characterized by intermediate light levels. The composition of the understory plant communities in old forests showed the weakest correlation to overstory light transmission, although those forests had the largest range of light transmission. The strongest correlation between characteristics of overstory light transmission and understory communities was found in aspen forests. Species diversity indices were consistently higher in aspen forests but showed weak relationships with overstory light transmission. Light attenuation by the understory vegetation and total height of the understory vegetation were strongly and positively related to overstory light transmission but not forest type. Therefore, light transmission through the overstory influenced the structure and function of understory plants more than their diversity and composition. This is likely due to the strong effect of the upper understory layers, which tend to homogenize light levels at the forest floor regardless of forest type. The understory plant community acts as a filter, thereby reducing light levels at the forest floor to uniformly low levels

    Maternal antenatal depression and child mental health: moderation by genomic risk for attention-deficit/hyperactivity disorder

    Get PDF
    Maternal antenatal depression strongly influences child mental health but with considerable inter-individual variation that is, in part, linked to genotype. The challenge is to effectively capture the genotypic influence. We outline a novel approach to describe genomic susceptibility to maternal antenatal depression focusing on child emotional/behavioral difficulties. Two cohorts provided measures of maternal depression, child genetic variation, and child mental health symptoms. We constructed a conventional polygenic risk score (PRS) for attention-deficit/hyperactivity disorder (ADHD) (PRSADHD) that significantly moderated the association between maternal antenatal depression and internalizing problems at 60 months (p = 2.94 x 10(-4), R-2 = .18). We then constructed an interaction PRS (xPRS) based on a subset of those single nucleotide polymorphisms from the PRSADHD that most accounted for the moderation of the association between maternal antenatal depression and child outcome. The interaction between maternal antenatal depression and this xPRS accounted for a larger proportion of the variance in child emotional/behavioral problems than models based on any PRSADHD (p = 5.50 x 10(-9), R-2 = .27), with similar findings in the replication cohort. The xPRS was significantly enriched for genes involved in neuronal development and synaptic function. Our study illustrates a novel approach to the study of genotypic moderation on the impact of maternal antenatal depression on child mental health and highlights the utility of the xPRS approach. These findings advance our understanding of individual differences in the developmental origins of mental health.Stress and Psychopatholog

    Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO

    Full text link
    Liquid xenon time projection chambers are promising detectors to search for neutrinoless double beta decay (0νββ\nu \beta \beta), due to their response uniformity, monolithic sensitive volume, scalability to large target masses, and suitability for extremely low background operations. The nEXO collaboration has designed a tonne-scale time projection chamber that aims to search for 0νββ\nu \beta \beta of \ce{^{136}Xe} with projected half-life sensitivity of 1.35×10281.35\times 10^{28}~yr. To reach this sensitivity, the design goal for nEXO is \leq1\% energy resolution at the decay QQ-value (2458.07±0.312458.07\pm 0.31~keV). Reaching this resolution requires the efficient collection of both the ionization and scintillation produced in the detector. The nEXO design employs Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm scintillation light of liquid xenon. This paper reports on the characterization of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3 SiPMs specifically designed for nEXO, as well as new measurements on new test samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters (MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct crosstalk, correlated avalanches and photon detection efficiency were measured as a function of the applied over voltage and wavelength at liquid xenon temperature (163~K). The results from this study are used to provide updated estimates of the achievable energy resolution at the decay QQ-value for the nEXO design

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    Analyse pollinique des miels de l'Ontario, Canada

    No full text
    International audienc

    Pollen and nectar sources near Rimouski, Quebec, Canada

    No full text
    In 1980, the study of pollen yields and honeys from the same hive was conducted near Rimouski, in the Lower Saint-Laurence River region (fig 1). Pollen yields were collected daily using a trap placed on a new colony. Half of the yields were examined through sorting of pellets (Louveaux, 1958a). Honey samples, covering one week each, were extracted at the end of the season using photographic comparison of honeycombs. Standard meteorological data were recorded daily, and weekly surveys of flowering plants were performed within a 1.5 km radius around the apiary (fig 1). A total of 1 226 g of fresh pollen were extracted from the trap during a 3.5 mth period (table I). Considering the trap efficiency, around 12.5 kg of fresh pollen were collected by the bees for a mean of 3.6 kg/mo. This result is remarkable, considering the restraints imposed on the colony and the bad weather conditions of 1980. On 60 taxa identified in the pellets (fig 2), only 16 displayed individual values greater than 1% of the total pollen crop (table II). The main pollen sources (> 10%) were : Trifolium hybridum / T repens, Cornus stolonifera, and Salix spp. Mixed pollen pellets were recorded in 65% of pollen yields but they represent only 0.4% of the total yield. Thirty-six (36) taxa were identified in mixed pellets (table III). Pollen analysis of 13 successive honeys and 3 annual ones from the same apiary showed the presence of 42 taxa (fig 3). Other information about these honeys is given in table IV. Most of the honeys are poor in pollen grains. Honeys from the beginning of the season are mixed floral; they are replaced by Rubus idaeus monofloral honeys and then by mixed honeys preceding monofloral honeys of Trifolium hybridum / T repens. The last successive honey presents a double dominance with Medicago sativa. Rubus and Trifolium association is also found in the 3 annual honeys. Pollen analysis of successive honeys has demonstrated the contamination of honey by pollen which is part of the bees diet. These phenomena, caused by the bees, would explain the presence in honey of species without floral nectaries and species which were no longer in bloom when the honey super was installed. Most of the plants selected by the bees were present within 500 m of the apiary, were selected from the indigenous or naturalised flora and were visited for both pollen and nectar (table V)

    Editorial. La amistad como problema filosófico a la luz de Aristóteles

    No full text
    SCOPUS: cp.kinfo:eu-repo/semantics/publishe
    corecore