37 research outputs found

    Almost Optimal Classical Approximation Algorithms for a Quantum Generalization of Max-Cut

    Get PDF
    Approximation algorithms for constraint satisfaction problems (CSPs) are a central direction of study in theoretical computer science. In this work, we study classical product state approximation algorithms for a physically motivated quantum generalization of Max-Cut, known as the quantum Heisenberg model. This model is notoriously difficult to solve exactly, even on bipartite graphs, in stark contrast to the classical setting of Max-Cut. Here we show, for any interaction graph, how to classically and efficiently obtain approximation ratios 0.649 (anti-feromagnetic XY model) and 0.498 (anti-ferromagnetic Heisenberg XYZ model). These are almost optimal; we show that the best possible ratios achievable by a product state for these models is 2/3 and 1/2, respectively

    Application of the Level-2 Quantum Lasserre Hierarchy in Quantum Approximation Algorithms

    Get PDF
    The Lasserre Hierarchy is a set of semidefinite programs which yield increasingly tight bounds on optimal solutions to many NP-hard optimization problems. The hierarchy is parameterized by levels, with a higher level corresponding to a more accurate relaxation. High level programs have proven to be invaluable components of approximation algorithms for many NP-hard optimization problems. There is a natural analogous quantum hierarchy, which is also parameterized by level and provides a relaxation of many (QMA-hard) quantum problems of interest. In contrast to the classical case, however, there is only one approximation algorithm which makes use of higher levels of the hierarchy. Here we provide the first ever use of the level-2 hierarchy in an approximation algorithm for a particular QMA-complete problem, so-called Quantum Max Cut. We obtain modest improvements on state-of-the-art approximation factors for this problem, as well as demonstrate that the level-2 hierarchy satisfies many physically-motivated constraints that the level-1 does not satisfy. Indeed, this observation is at the heart of our analysis and indicates that higher levels of the quantum Lasserre Hierarchy may be very useful tools in the design of approximation algorithms for QMA-complete problems

    Beating Random Assignment for Approximating Quantum 2-Local Hamiltonian Problems

    Get PDF
    The quantum k-Local Hamiltonian problem is a natural generalization of classical constraint satisfaction problems (k-CSP) and is complete for QMA, a quantum analog of NP. Although the complexity of k-Local Hamiltonian problems has been well studied, only a handful of approximation results are known. For Max 2-Local Hamiltonian where each term is a rank 3 projector, a natural quantum generalization of classical Max 2-SAT, the best known approximation algorithm was the trivial random assignment, yielding a 0.75-approximation. We present the first approximation algorithm beating this bound, a classical polynomial-time 0.764-approximation. For strictly quadratic instances, which are maximally entangled instances, we provide a 0.801 approximation algorithm, and numerically demonstrate that our algorithm is likely a 0.821-approximation. We conjecture these are the hardest instances to approximate. We also give improved approximations for quantum generalizations of other related classical 2-CSPs. Finally, we exploit quantum connections to a generalization of the Grothendieck problem to obtain a classical constant-factor approximation for the physically relevant special case of strictly quadratic traceless 2-Local Hamiltonians on bipartite interaction graphs, where a inverse logarithmic approximation was the best previously known (for general interaction graphs). Our work employs recently developed techniques for analyzing classical approximations of CSPs and is intended to be accessible to both quantum information scientists and classical computer scientists

    Improved Approximations for Extremal Eigenvalues of Sparse Hamiltonians

    Get PDF
    We give a classical 1/(qk+1)1/(qk+1)-approximation for the maximum eigenvalue of a kk-sparse fermionic Hamiltonian with strictly qq-local terms, as well as a 1/(4k+1)1/(4k+1)-approximation when the Hamiltonian has both 22-local and 44-local terms. More generally we obtain a 1/O(qk2)1/O(qk^2)-approximation for kk-sparse fermionic Hamiltonians with terms of locality at most qq. Our techniques also yield analogous approximations for kk-sparse, qq-local qubit Hamiltonians with small hidden constants and improved dependence on qq.Comment: 6 pages, No Figures, edited typos and added additional details on the qubit results, accepted to TQC202

    An Approximation Algorithm for the MAX-2-Local Hamiltonian Problem

    Get PDF
    We present a classical approximation algorithm for the MAX-2-Local Hamiltonian problem. This is a maximization version of the QMA-complete 2-Local Hamiltonian problem in quantum computing, with the additional assumption that each local term is positive semidefinite. The MAX-2-Local Hamiltonian problem generalizes NP-hard constraint satisfaction problems, and our results may be viewed as generalizations of approximation approaches for the MAX-2-CSP problem. We work in the product state space and extend the framework of Goemans and Williamson for approximating MAX-2-CSPs. The key difference is that in the product state setting, a solution consists of a set of normalized 3-dimensional vectors rather than boolean numbers, and we leverage approximation results for rank-constrained Grothendieck inequalities. For MAX-2-Local Hamiltonian we achieve an approximation ratio of 0.328. This is the first example of an approximation algorithm beating the random quantum assignment ratio of 0.25 by a constant factor

    Max-weight integral multicommodity flow in spiders and high-capacity trees

    Get PDF
    Abstract. We consider the max-weight integer multicommodity flow problem in trees. In this problem we are given an edge-capacitated tree and weighted pairs of terminals, and the objective is to find a max-weight integral flow between terminal pairs subject to the capacities. This problem was shown to be APX-hard by Garg, Vazirani and Yannakakis [Algorithmica, 1997], and a 4-approximation was given by Chekuri, Mydlarz and Shepherd [ACM Trans. Alg., 2007]. Some special cases are known to be solvable in polynomial time, including when the graph is a star (via b-matching) or a path. First, when every edge has capacity at least µ ≥ 2, we use iterated relaxation to obtain an improved approximation ratio of min{3, 1+4/µ+6/(µ 2 −µ)}. We show this ratio bounds the integrality gap of the natural LP relaxation. A complementary hardness result yields a 1+Θ(1/µ) threshold of approximability (if P ̸ = NP). Second, we extend the range of instances for which exact solutions can be found efficiently. When the tree is a spider (i.e. if only one vertex has degree greater than 2) we give a polynomial-time algorithm to find an optimal solution, as well as a polyhedral description of the integer hull of all In the max-weight integral multicommodity flow problem (WMCF), we are given an undirected supply graph G = (V,E), terminal pairs (s1,t1),...,(sk,tk) where si,ti ∈ V, non-negative weight
    corecore